

Fig. 6A Fig. 6B Fig. 6C Fig. 6D Fig. 6E Fig. 6 Summarization of I's: Fig. 6A = 1,111; Fig. 6B = 1,177; Fig. 6C = 1,452; Fig. 6D = 1,933; Fig. 6E = 1,780.

The unit stress in the steel for the total load was 1,847 pounds per square inch, as found above.

This corresponds to a stress in the concrete at $2\frac{3}{4}$ ins. below the neutral axis of 1,847 $\times \frac{2,800,000}{30,000,000} \times \frac{2\frac{3}{4}}{1^{13}/16} = 262.$

$$\therefore \frac{125,000 \times 22.43 \times 12}{7} = 2,620 \times 262.$$

whence
$$x = 49$$
 or $M_0 = \frac{W}{W}$

266

Considering now the stress in the concrete, which was 622 pounds per square inch for total load, we have. $125,000 \times 22.43 \times 12 = 1,410 \times 622$

whence we find
$$x' = 38.4$$
 or $M_{\circ} = \frac{WL}{38.4}$

Taking the average of these two results, we have a moment of $\frac{1}{2}$ $\left(\frac{WL}{49} + \frac{WL}{38.4}\right) = \frac{WL}{44}$ for strip B at centre.

Strip B at Centre Line of Columns

Fig. 9 shows a cross-section through strip B at the centre line of columns indicating the position of the neutral axis as determined from deformation readings.

It was found in the same manner as before that a deformation of 2.5 for the live load would occur at 3.82 ins. above the neutral axis, so that only the concrete below this point could be considered effective. The properties of the section determined on this basis are :--

$$I = 4,102$$

 $Q_{\circ} = 1,346$
 $Q_{t} = 876$

The bending moment according to Chicago By-law is 236,000 inch-pounds.

:
$$c = \frac{236,000}{1,346} = 175\frac{1}{2}$$
 pounds per square inch.

$$ct = \frac{236,000}{876} = 270$$

and
$$s = 270 \times \frac{30,000,000}{2,800,000} = 2,890$$
 pounds per sq. in.

Readings 583 and 784 give c = 319 and s = 3,960 as the stresses for total load.

To find the bending moment coefficient corresponding to these readings we have

$$\frac{111,000 \times 21\frac{14}{4} \times 12}{x} = 876 \times 3,960 \times \frac{2,800,000}{30,000,000}$$

whence $x = 88$,
which gives $M_s = \frac{WL}{88}$ computed from stress in steel, also
111,000 \times 21\frac{14}{4} \times 12

$$x' = 1,346 \times 31$$

whence $x' = 66$

Code	StripA	StripB	Mr.	MB	MS	MC	Ct	Dt	7+	T1+
Chicago	12	4	- 44	+ 11/2	-120	+ 20	.225L	.33L	N.P.S	600 \$2
Philadelphia	45L	45L	-WL*	+ 14/2	-1155	+144	.21	.381	137	45
Joint Commte	4	4	-W/L 25	+#1	-W/L	+ 1/33	.21	.46	-	60 32

*Mr for steel in straight band is \$ and for steel in diagonal band \$

Table 1-Comparison of Recommendations of Chicago and Philadelphia and Joint Committee Report

which gives $M_s = \frac{WL}{66}$ computed from stress in concrete, or an average of $M_s = \frac{WL}{77}$ for strip B at the centre line of columns.

State Basel in the	At edge of Capital.						Strip A at Centre			Strip B at Centre							5571	Col	
Reading Nº	710	7/3	7/7	601	607	614	656	662	663	657	658	659	660	785	786	800	801	784	5
Stress In	3/201	steel	steel	COIX	Can.	Con	5reel	5,000	Steel	Hec!	Steel	steet	5/00/	Conc	Conc	Conc	Conc	stac/	a
Chicago Code	15900	15040	15570	-658	-592	-635	18000	16080	16080	17880	16350	16350	17880	-326	-390	-326	-390	13270	1:
Philadelphia Code	30600 LTL	18800	2580017	-695	-626	-67/	15310	13690	13690	14890	13610	13610	14890	-302	-361	-302	-36/	10270	1:
Joint Commts Report	19600	18450	19100	-789	-710	-762	25950	23/60	23/60	11510	10530	10530	11500	-294	-352	-294	-352	15900	1
Test	5925	4680	2066	-176	-676	-562	3860	6480	7720	7240	7110	1504	2190	-574	-7/7	-685	-557	3960	E

Table 2-Comparison of Stresses for Live and Dead Loads Combined According to Various Codes, with Those Found by Test. Stresses are in Pounds Per Square Inch