Pittsburg, is able to show very good returns on its capital and make extensive betterments to its system at the same time, on an average rate of 4 of a cent per ton per mile. The lonnage statistics as published in the annual report of the statistics as published in the annual report of the statistics and the statistics are statistics. report of this road are of great interest, and having one of the heaviest mineral traffic in the world, it has conditions for making a good should for instance showing, which are quite ideal; for instance its average load of freight for last year on south house to the state was 1.470 tons, south bound iron ore trains was 1,479 tons, and the and south and its average train load for north and south bound trains was 913 tons. These are re-markable figures and are more than 100% bet-ter than and the more than 100% better than are shown by such roads as the transcontinental systems, all of which handle a mixed traffic, and the train load results which they show of from 300 to 480 tons a train mile is all that can be expected under the circumstances.

With regard to the future of railway rates, a study of the subject forces one to the conclusion that railway companies are so progressive and enterprising that, given a large and steady volume of traffic, they will equip themselves to carry it cheaply, as the Bessemer and Lake Erie Ry. and others have done and the Eric Ry. done, and that in the future we shall see rates that that are substantially lower than those we have considerated and the future we shall be substantially lower than those we have considered in this paper. It is generally concederated in this paper. been made by the railways in operating economics been been to be the railways in operating been made by the railways in operating become the beauty because the beauty beauty because the beauty beau economics has been largely brought about up to the present time by the improvements that have been made in locomotive and car construction made in locomotive ablainable on struction. The latest statistics obtainable on the train. the train load questions, as given below, would indicate the control of the contr indicate that the rate of improvement in the train load figures has not been so well maintained at that the tained during the past year, and that the yearly improvements in the train load which have hear have been accomplished by increasing the size of locomotives and cars, have about reached their limit.

TRAIN LOADS INCREASED.

Las.

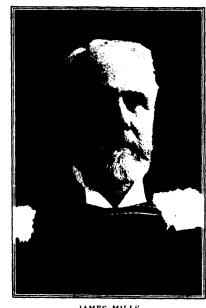
Atchison Illinois Central Norfolk, Onto-	1903.	1902.	1901.	1900.
litinois Central New York, Ontario & West.	485	466	463	429
New Your al	279	247	242	221
Corfolk Ontario	288	274	235	221
New York, Ontario & West C., C. & Western	287	285	290	287
Norfolk & West C. C. & St. Louis St. Louis & San F Toledo, St. Louis	486	476	461	345
Tabash & San F	333	332	333	335
holedo e	195	186	200	1.54
		285	283	269
C'ie Central	295	285	250	
Oldo, St. Louis & W. Risconsin Central St. Louis South West. TRAIN	303	286	260	2.58
South West	406	376	375	369
st	252	232	210	207
N- TRAIN LOADS	NCH	NCE		

York, N.H. & H. 1903. 1902.

231 TRAIN LOADS DECREASED

239

Couther	- DICKERSED.				
St. Paul. Southern Chesapeaba	1903.	1902.	1901.	1900.	
Chesapeake & Ohio Chicago & Great	344	346	324	317	
Chica peaks	244	254	237	205	
Chicago & Co Ohio	193	195	192	176	
Chicago & Great West. Lin Order 4	493	509	511	488	
In New Orleans	277	291	313	261	
We Order	531	249	232	235	


er to make further reductions the railays must continue the work of cutting down the Rradiantinue the work of cutting the Rradiantinue the work of cuttinue the ways must continue the work of cutting uo... their gradients, and will also probably obtain additional each of the adoption of the additional economy from the adoption of the alternating current electric locomotive.

The question of coal consumption in relation e question of coal consumption in relation to ton mileage is also of interest. In gines of the vessels fitted with marine engines of the most advanced type for fuel saving, a consumption of 2.5 lbs. of coal per 100 has been claimed is, a consumption of 2.5 lbs. of coal per room miles of freight carried, has been claimed as a record reight carried, has been claimed as a record, but marine engineers generally regard a consumption of 5 lbs. of coal per 100 miles are unption of 5 lbs. of coal per 100 miles are unption of 5 lbs. ton miles as the average, whereas the con-lbs, per 100 ton miles

lbs, per 100 ton miles.

I commenced my early engineering training in locomotive work and have the highest in all the I commenced my early engineering train-ing in locomotive work, and have the highest appreciation of the locomotive in all the stages of its wonderful development. But it would seem that it has now nearly reached its limit, and is destined to be outclassed by a limit, and is destined to be outclassed by a

machine which will merely consist of a group of four or more electric motors mounted on as many driving axles. There is no doubt that such electric apparatus has been designed and can be built upon the basis of the electrical engineering science as it now exists, and that such a machine would give better results than the locomotive in fuel economy, Draw Bar Pull, and the economical and elastic distribution of wheel load with reference to wear and tear on rails, roadbed and bridges. There is no data in existence based upon results that can lead us to any definite conclusion as to what the relative consumption of fuel and power would be as between the handling of freight trains as they are now handled by steam locomotives, compared with results that might be obtained by the use of the electric locomotive driven from a central power station. Still we have the very instructive and significant comparison which exists between the fuel consumption on steam tram cars as compared with the consumption on electric cars in street railway service. In the case of the former, the consumption of coke, which is the usual fuel used, is 15 lbs. per car per mile, and in the latter 8 lbs. of coal per car per mile.

JAMES MILLS,

Member of the Board of Railway Commissioners, for Canada.

Recent British Columbia Legislation.

At the recent session of the B.C. Legislature the following acts affecting transportation interests were passed:

Incorporating the Coast-Yukon Ry. Co. Incorporating the Cowichan, Alberni and Fort Rupert Ry. Co.

Securing to pioneer settlers within the Esquimalt and Nanaimo Ry. land belt their surface and under surface rights.

Amending the Granby Consolidated Mining, Smelting and Power Co. Act, 1900.

Amending the Midway and Vernon Ry. Co. Act, 1901.

Providing an additional sum for the completion of the New Westminster bridge across the Fraser river.

Canadian Ticket Agents' Association.— W. Bunton, Chairman, and W. Jackson, another member of the Francisco other member of the Executive, recently went to St. Louis, Mo., to make arrangements for the visit of the Association there in May. A meeting of the Executive will be held in Toronto on Mar. 7 to receive their report and to arrange the itinerary, etc.

March Birthdays.

Many happy returns of the day to

P. S. Archibald, C.E., General Manager Elgin and Havelock Ry., at Moncton, N.B., born at Truro, N.S., Mar. 21, 1848.

C. N. Armstrong, ex-General Manager Atlantic and Lake Superior Ry., at Montreal, Que., born at Maskinonge, Que., Mar. 19,

D. E. Brown, General Agent C.P.R. for China, Japan, etc., at Hong Kong, born at Owen Sound, Ont., Mar. 20, 1855.
G. J. Bury, General Superintendent Central

division C.P.R. at Winnipeg, Man., born at Montreal, Que., Mar. 6, 1866.

J. A. Cameron, ex-Superintendent C.P.R. Cranbrook, B.C., born at Pictou, N.S.,

Mar. 5, 1855.
F. G. J. Comeau, General Freight Agent Dominion Atlantic Ry. at Halifax, N.S., born at Meteghan River, N.S., Mar. 10, 1859.

A. E. Cox, Storekeeper Canadian Northern Ry. at Winnipeg, Man., born at Huddersfield, Eng., Mar. 12, 1863.

H. B. Curtis, General Superintendent New-

foundland Express Co. at St. John's, Nfld., born at Adrian, Ohio, Mar. 21, 1848.

Hon. L. J. Forget, President Montreal

Street Ry. Co., born at Terrebonne, Que.,

Mar. 11, 1853.
C. O. Foss, Engineer of Maintenance Halifax and Southwestern Ry., at Bridgewater, N.S., born at Wentworth, N.H., Mar. 20,

1852. H. W. Gays, President and General Manager Ottawa and New York Ry., and Receiver New York and Ottawa Rd. at Ottawa, Ont., born at Brant, Erie co., N.Y., Mar. 21,

F. Grundy, General Manager Quebec Central Ry., at Sherbrooke, Que., and President Temiscouata Ry., born at Bury, Lanc., Eng.,

Mar. 28, 1836.

J. Halstead, chief clerk to Assistant Gen-

J. Halstead, Chief clerk to Assistant General Freight Agent C.P.R. at Vancouver, B.C., born at Bracebridge, Ont., Mar. 2, 1877. R. M. Hannaford, Engineer Permanent Way, Buildings and Bridges, Montreal Street Ry., Montreal, born there, Mar. 22, 1865.
W. Harty, M.P., President Canadian Locometics C. Vicanto Cont. Local in Bild Laboration.

motive Co., Kingston, Ont., born in Biddulph tp., Middlesex, Ont., Mar. 8, 1847.

C. A. Hayes, Assistant General Freight Agent G.T.R., Chicago, Ill., born at West Springfield, Mass., Mar. 10, 1865. H. S. Heydon, New York Agent Freight Department Canada Atlantic Ry., at New York city, born at Newark, N.Y., Mar. 28, 1861.

C. B. Hibbard, General Manager Quebec Southern Ry., Montreal, born at St. John's, Que., Mar. 31, 1858.

C. H. Hines, Electrical Engineer C.P.R., Montreal, born at Buffalo, N. Y., Mar. 6, 1865.

J. Hobson, Chief Engineer G.T.R. at Mon-

treal, born at Guelph, Ont., Mar., 1834. C. E. Lytle, General Superintendent Duluth, South Shore and Atlantic Ry., at Marquette, Mich., born at Newark, Ohio, Mar. 2, 1859. L. Macdonald, Division Freight Agent

G.T.R. at Hamilton, Ont., born Mar. 15, 1860.

D. D. Mann, of Mackenzie, Mann & Co., and 1st Vice-President Canadian Northern Ry. Co., Toronto, born at Acton, Ont., Mar. 23, 1853.

Owen McKay, Division Engineer Buffalo division Pere Marquette Rd., Walkerville, Ont., born in Ross tp., Renfrew co., Ont., Mar. 13, 1848.
W. C. Orchard, chief Freight Tariff Bur-

eau C.P.R., at Montreal, born in London, Eng., Mar. 16, 1865.

H. Parry, General Agent Passenger De-partment, New York Central Rd., at Buffalo, N.Y., born at Hamilton, Ont., Mar. 27, 1865.