A couple of mice.
A swarm of bees.
A herd of cattle.
A luck of birds.
A drote of horses.
17. Write the plurals of-

18. Writo an inquiry about-

A carpet. The train. A knife. The time.
1f. Writo a statement, an inquiry, and a command.
20. Write a sontence containing ten words, and requiring four capitals.
-St. Lonis Jour. of Ed.

A LESSON IN ARITHMETIC.

BY BELL S. THOMTSON,

Principal of the I'raining School, Darenport, Ia.
The lesson was given to a class of thirty children, between ths ages of 10 and 12 years; the time sccupied 25 minutes.
roint of the Lesson. - To lead the children to discover what i meant by multiplying one fraction by another, and to teach them the process.
Apparatus $U_{\text {sed }}$ - Each child was provided with four pieces of paper, each piece esout six inches long and four inches wide.

Method. The teacher wrute f on the tcard, and told the chil dren to tind that fraction of one of tho papers. After this had been done by all, a child when called upon said, "I divided my paper into four equal parts and took one of them; I have onefourth."
The teacher then said, "I vant you to find $\frac{1}{3}$ of that fourth; how will you do it ?" A child said, "Divide the fourth into three equa parts and take one of them." All the class did so.

What part of the one-fourth have you found? "One-third of one-fuuth." All hold up the answer.

Examine this, and compare it with what is left of the first paper you divided. How many such parts as you have now (holding up $\frac{1}{3}$ of \ddagger) would it taie to make the whole paper? "Twelve."

Then this must be what part of the wholo paper? "Onetwelfth $?^{\prime \prime}$

Then $\frac{f}{3}$ of $\frac{1}{4}$ is what part of the whole ? "On r-twelfth."
Teacher wrote on the board, $\frac{1}{3}$ of $:=\frac{1}{1}$.
The teacher then drew on the board a line. 2 J or 30 inches long, and had it divided into fifths. She then wrote the expression $\frac{3}{3}$ of 3, and asked who could find it. From several volunteers one was selected, who promptly divided the fifth iato three equal parts and indicated two of them. The class then discoverod that it was 1^{2} of the whole line, because in each of the five parts there were threesuch small parts. $\frac{3}{3}$ of $\}=x^{2} s$ was then written on the board under the first discovery; ${ }_{3}^{0} 0$ of $3_{5}^{2}=1_{15}^{4}$ was casily discovered from the same line. An oblong drawn upon the beard was divided into thirds, and two of them marked off thus (ses No. 1):

Voluntecrs were called for from the class to divide tho twothirds into fourths. They were all ready, and one proceeded to the board and did it (see lio. 2).

Another being called upon to mark ofe distinctly from the rest,

 other oxpressions.
did iv (see No. 3, A). Another did it (seo No. 3, B).
Tho teacher then carried the light lines across the excluin ' third so as to exclude the whole oblong in the division (see No. 4), and asked what part of the whole oblong is $\&$ of $\frac{y_{3}}{}$ of it? The whole class answered, " 1^{2} I written on the board with the

The children then folded the p.per., and found that $\frac{1}{2}$ of $\frac{3}{2}=$

The teacher now went back to the tirst discovery, $\frac{1}{3}$ of $\ddagger=$ r^{\prime}, and led the class by comparison to see and to say that to find $\frac{1}{3}$ of f, the wholo unit is divided into three times four equal parts and one part taken. She then wrote, -

Examining the second result (the real thing, not the figures), they saw and said, "the unit has been divided into 3 times 5 parts, av: ? times 1 part taken"; and as childron dictated, the teacher wrote,今 of $3=\frac{1}{6} \times \frac{1}{3}=5^{2}$.
The other results were then examined, and the teacher wrote the process from dictation as before.
When $\frac{1}{3}$ of $\frac{3}{3}=\frac{\pi}{3}$ or $\frac{1}{f}$ was reached, the teachor called attention of the class to tho fact that i^{2} had been reduced to its lowest terms, and that this could be done before multiplying, thus saving tine and labor when the numbers were larger ; then the ofacation stood thus: $\frac{1}{}$ of $\frac{9}{3}=\frac{1}{4}$ (cancelling 2 in the numeratur and 2 from the 4 in the denominator) $=\frac{1}{6}$.

After all the expressions whose results were known had been thus treated, the teacher wrote the following, whose answer was unknown: 3 of $\frac{8}{5}=$? The children, reasoning from analogy, said, "To find $\frac{3}{4}$ of $\frac{3}{3}$, we must divide the whole unit into four times five parts, and take 3 times 3 of them, which will give ${ }_{2}{ }^{2}$." They wrote the solution as before. They then verified the result with their papers.

They were now ready to solve any similar problems and to do it understandingly, cancelling or reducing to luwest terms whenever possible.
The teacher then proceeded to tell the class that such expressions as $\frac{3}{4} \times \frac{3}{3}$ mean $\frac{9}{3}$ of $\frac{3}{3}$, which the class interpreted to mean, "Take 3 of a thing, divide it into 3 equal parts and take 2 of them. Of course they saw thet they would have twelfths, and 6 of them, or $\frac{1}{2}$, and gave the solution thus:

$$
\frac{3}{4} \times \frac{3}{3} \times \frac{3}{3}=\frac{1}{4}
$$

This lesson will bo followed by practice in solving such problems by dividing real things into parts, and also by drill exercises, to make the class quick and accurate in the process of cancellation. -
N. E. Joumal of Education.

FRIDAY AFTERNOON.

by groroh c. atastin, codnty superintendent of carroll county, milinols.
In answer to a letter of inquiry asking for suggestions relative to

