shall address you in plain and familinr terms. I do not want to play the orator, but rather to take the part of the tencher, if 1 can succeed in so doing (checrs), I wish first to speak to you about ploughing.
There are all kinds of plougling, the use of fallows and the use of draining. Now these operations are intimately connected together. In the first place, what docs the plough do? I will show you. Every year the atmosphere nust make soluble a number of the chemical substances to which I have alluded (Ineed not go over their names again), to be taken up by your plants; otherwise those plants will not grow, The atmosphere is always acting on the land. Now suppose it is acting on an acre of land, and you take the plough, and throw up the soil to a depth of six, eight, or ten inches. After you have done this, only perceive to what an extent of surfice it then operates, compared with what it did before the acre had been ploughed and when the upper surface only could be acted upon By thus onening up the laud, you let in the atmosphere; the soil is disintegrated, so as to set free the largest quantity of those necessary substances for the succeeding crop. I can imagine gentlemen suying, "If 1 were to stir that land to the depth of eight inches, I should never get any thing to grow." But could you not subsoil it first? (Hear). Messrs, Drewit, of Guildford, have actually ploughed into chalk, and made a soil for themselves, But they manure well, gentlemen (IFear). Ploughing is comparatively of very litthe use unless deep: it is perfectly absurd to see them in Norfolk ploughing to the depth ouly of two inches and a half, I think they are wrong, because they prevent the action of the atmosphere upon the substances of which I have been speaking. Now what do fallows do? Why the very same thing, they leave the land exposed to the action of the air, but by ploughing deeply you accomplish the same end. (A member observed "Fallows are pretty well out of fashion now") so that fallows are nothing more thanassistance to the plough. It is, however unnecessary; you can always do without it, except in cases where there are grat quantities of weeds to be cradicated and these should never have been allowed by a good farmer to get ahead. A spring fallow for turnips is guite sufficient; but a fallow in the carly part of the spring is all that ought ever to be attempted. For it is much better to have green crops and plough them in, than to have any fallow at all. Well, then comes the draining. Draining acts in two ways: one way in assisting the operation of opening up the land to the action of the atmospheric air, and the other in taking away the redundant water from the roots of plants. The water eithur arises front springs in the land, or it talls from the heavens. That which arises from springs is generolly best got rid of by boring; and that which falls upon the sarface, you do not want to take off the cream of the joke, or, what is the same thiug, the cream of the land. You want it to percolate; so that all the substances alluded to may let very little else than pure water go away. There has been a good deal of talk about the respective merits of decp and shallow draining. My opinion is, that deep draining is much the best. The marrow of the landlics between the drain and the surface: the marrow of these useful substances will with deep draining be retained, and the water will run away slowly. Draining acts also in another way. After you have made a drain, you will soon observe a great number of fissures in the land, this will be the case cren in the stiffest clay. These fissures rise up to the yery surface, and allowing the air to get in, the same effect is produced as by ploughiug. This is constantly at work'; as the water goes down the fissurcs are left open. Whius there is it con-
stant action of air and water-air and water which are of the grenteat bencfit to the plants of the soil, in liberating those ureful mineral substances (Hear, hear). Now the drains prevent an excess of water, which is a great object to be accomplished; for the moment the plants have had enough, that which remains and was useful at first, now begins to act as a poison. Drainitig is also highly beneficial in carrying the water of the surface of the land: if it lies uponthe surface of the land it has the effect of cooling it; and you allknow that you want heat. You well know the difference between what is called cold lands, and a warm genal soil (Hear) ; and this difference plainly depends upon the presence or absence of an excess of-water. If you have jour land covered or saturated with water the sun is employed only in evaporating that water instead of heating the land.
The nest point to which I propose to call your attention is the process of making mixens, and manures in general. Now these manures must consist of oxygen, uitrogen, hydrogen, and carbon, with the mineral ingredients before mentioned. Your manures are made up of vegetable matter, straw, and aninal excrement. Some people think-I have met with many people who thiuk that the lands derive great advantage from sheep being put upon them; they imagine, if they put a flock of sheep upon twenty tons of swedes, that these sheep have some unaccountable way of benefiting the land. Why, they cañot put anything upoin the land which they do not derive from the surnips. They have no power of making mavure theinselves; ley will in fact take something from the land. Twenty tons of turnips rotted in the land, would give nore manure than the shecp will give by eating the same amount of turinips upon the land 1 do not say that it is better to rot your turnips than to feed your sheep upon them, but I am stating a matter of fact in relation to the comparative amount of minare to be derived; and 1 repeat, that the whole of the manure which they can put upon the land, they derive from the turnips. When you use hay, or linseed, or oil cake in addition to the turnips, you are adding manure to the land, for the major portion goes upori it. These sheep, then, derive the whole of their manuring power from the food which they consume; bullocks do the same. Where do vegetables derive their sustenance? -From the mineral substances in the land; froin the air, and the principles of those from the air, are caitbon and nitrogen. The carbon is there in sufficient quiantities, but the nitrogen it is well to supply in the form. of ammonia. Your mixeus consist of fodder for the cattle, their excrement, \&e., all put together in a héap in your farm-yards. These vards are generally nide with a gente slope down to the horsepond; thein the: outhouses and sheds are constructed with the greatest ingenuity, so that all the urine may run away from the mixens; taking care that the whole shall be washed by the drippings from the outhouses, and that all the washings shall be drained off into the horsepond ("Hear.' and loughter). Why, I believe,-I know it has actually been conjectured by some people, that this misture, this part of the manure, which would have been invaluable to the vegetable when preserved, was beneficial to the animals that drank out of the ponds. Now allow me to say, that I believe that one half of the consumptions in catile arise from their drinking this abominable mixture : diseases of the lungs must be geenerated by drinking such a compound Putting this matter however, out of the question, this urine and this soluble matter which are thius washed away are the most valuable portions of the manure, By allowing these to run off, you take from your manute the potash, the soda, the chicf part of the phos-

