SOLUTIONS OF PROBLEMS FOR 1855.

PROBLEM 1.—The spike describes 798 cycloids, each of which is 20 ft. The first or last $\frac{1}{2}$ is=5 feet. \cdot : 798 × 20=15960. and +5=15965 feet. Answer.

PROB. 2.—This is worked on the same principle as compound interest, by logarithms.

The answer is 2.8113 per cent.

PROB. 3.—The curve described is the involute of a circle. 100×100+(1+16.5)=165000

rods, or $515\frac{1}{8}$ miles. Ans. PROB. $4.-\frac{1}{8}(2-\sqrt{3})\times 12=1.6072952$ inches thick. Ans. PROB. 5.-Area of a transverse section of the ring=0.012526953. Distance of the centre of gravity of that section from the centre of the ring=.39106. $2\times.39106\times3.1416$

×.012526953=solid area, or .03084 inches. Ans.

PROB. 6.—4/(3d root of 48 × 48 + 3d root of 16 × 16) cubed=86.436 inches, or 7.203 feet. PROB. 7.—2.18169 x by the length of the side (=1)=2.18169 solid feet.

Surface= $\frac{1}{2} \times 20 \times 4/3 = 5 \times 3 = 8$ 66025 square feet. Ans.

Prob. 8.—Sides 52:915 rods, or 20 4 7. Area=700 4 3 rods=7:57772225 acres.

Prob. 9.— $\frac{1}{2}$: $\frac{1}{2}$::2:2-9. 2 feet added make 2 2-9 feet. Ans.

Prob. 10.—This belongs to the Calculus. If the ball be discharged at foot of the mountain, it must move 17 times faster than the earth revolves. At 5 miles, it must

move 16-7746 times faster, or 4-83908 miles per second. Ans.

PROB. 11.—1 lb. and 2 lbs.=3 lbs. 3×3=9 lbs. 9×3=27lbs. 27×3=81 lbs. • The

weights are 1, 2, 9, 27 and 81 lbs. Ans.

PROB. 12.—This is too lengthy for insertion. Ans.—53534 42 square miles.

PROB. 13.—Log. amt.=log. principal+10×.07×.4342944819=3 60503608, or \$4027-50 Ans.

PROB. 14.—The cheese will consist of a cylinder, two segments of a sphere, and a body

around it like a hoop or finger-ring. 1770-43569 solid inches. Ans.

PROB. 15.—The required body lacks the ee equal segments of a sphere, of being a globe.

Solid area=178024 inches. Superficial=408408 sq. inches.

PROB. 16.—By spherical Trig. the arc or line required=9° 57′ 42°.648=687.8528 miles

Ans.

PROB. 17—The required body will lack four equal segments of a sphere of being s globe. Solid area= $402\cdot0087$ feet. Superficial= $287\cdot209$ ft.

PROB. 18.—Let x= that part of the globe's directer above water, then 6x squared—x cubed=32+3. $\therefore x=1.5478526$, and this from 4 leaves $2\cdot4521474$ ft. Ans.

PROB. 19.—The horse is to feed outside of the wall, of course. The rope is to reach half-way around, instead of all the way, (a typographical error.) Let x= radius of garden, then x cubed $\times 3.1416$ cubed $+6x=2\times160$. $\therefore x=7.8691$, and diameter= $15\cdot7382$ rods. Rope=7.8691 x 3.1416=24.722 rods. Ans.

PROB. 20.-5-2 tang. $45^{\circ}=2\frac{1}{2}$ tons=pr sure upon the tree. Pressure upon the stump (or the thrust)= $\frac{1}{2}\times5\times\sqrt{5}=5\cdot59017$ tons. Ans. Prob. 21.—Radius of largest inscribed globe will= $3\frac{1}{2}$; the area of this is to the tof the

PROB. 21.—Radius of largest inscribed globe will=3\(\frac{1}{2}\); the area of this is to that of the required globe, as the area of the cone is to that of the required globe, plus a fourth of the cone. Diameter=\(\frac{1}{2}\): 6974 inches. Ans.

PROB. 22.—Work this by Algebra, or by Alligation. Ans., 7, 21 and 72.

PROB. 23.—Velocity=643\(\frac{1}{3}\) feet per second; height=1608\(\frac{1}{3}\) feet; range=11142.86 feet.

PROB. 24.—This is worked by Arithmetic, but is too long for this place. A. can do it in 13\(\frac{1}{3}\) days; B. in 14, 14-29 days; C. in 11, 1-19 days, and D. in 70 days. All working together, will do it in 4 days. Ans.

PROB. 25.—The present values of \(\frac{1}{3}\) for 13, 11 and 9 years are 41:4964 etc. 47:5002 etc.

PROB. 25.—The present values of \$1 for 13, 11 and 9 years, are 41 4964 cts., 47 5092 cts., and 54, 39, 33 cts. The \$16,000 is to be divided in those ratios. • : \$46 30 04; \$5300 93,

and \$6069.03 are the Answers.

PROB. 26.—Add 4 to both sides, and extract the square root when we have x squared—3x + 2 = + or - 3. $\therefore x = \frac{1}{2}(3 + \text{or} - \sqrt[4]{3})$, or $\frac{1}{2}(3 + \text{or} - \sqrt[4]{-11})$. QUESTION 1.—Work by cancelling. $(2\frac{1}{2} \times 45 \times 34 \cdot 6 \times 12 \cdot 3 \times 39 \times 12 \cdot 3 \times 6 \times 92) + (22\frac{1}{2} \times 17 \cdot 3 \times 10\frac{1}{4} \times 2 \cdot 6 \times 23 \times 8 \cdot 2 \times 25 \times 8) = $32 \cdot 40$. Ans. Put mixed fractions into improper ones.

ACKNOWLEDGMENTS.—Correct solutions have been received of the Problems for 1855 as follows :-

Mr. George W. Hill, Clarkstown, N. Y., of Problems 1, 2, 3, 5, 8, 9, 12, 13, 15, 16, 17, 18.

Mr. D. D. Lathrop, Herrickville, Pa., of Problems 7, 9 and 22.

Mr. D. D. Lathrop, Herrickville, Pa., of Problems 7, 9 and 22.

Mr. H. B. Waterman, Minnesota City, Min. Ter., of Problems 2, 22, 24, 25 and 26.

Mr. C. E. Wood, East Smithfield, Pa., of Problems 7, 9, 10, 15 and 17.

Mr. Henry H. Sayler, Mecklenburg, N. Y., of Problems 2, 7, 9, 25, 26, and Questions 1, 2, 3 and 5.

Mr. S. B. Brands, Paterson, N. J., of Problems 4, 9, 22 and 25. Mr. David Phillips, Belleville, N. J., of Problems 1, 2, 7, 22, 23 and 25.

Nors.—For want of room the Solutions are very much shortened, and some are entirely omitted. We invite correspondents to send us solutions always before May 1st. Correspondents are also invited to send us original or well-selected problems, "with their solutions," which, if liked, we will insert next year.

S. H. WRIGHT.

DUNDER, N. Y., May 11, 1855.

RATES O Letters not w ing three thous All letters m

letters must be Each fraction Weekly news printed and pul

> Quarterly Rat in advance, a tion to actua

Newspapers an ing 1 oz. in in the State Newspapers an of 3 oz. and the United S Over 3 and not Over 4 and not Over 5 and no Over 6 and no Over 7 and no

Newspapers, books,) when 5, 3c. ; 5 to 6, Books, bour repaid-1 oz 6 to 7, 7c. ; 7 For any dis 8 to 4, 8c. ; 4 Transient n -8 oz. or und Bills and re papers. Exchanges

Newspaperi removing the the direction Be careful and State.

According 166 square n to give each

Nebraska T Utah Territ Texas -New Mexico Oregon Ter Minnesota California -Washington Kansas Indian Terr Missouri --Virginia ... Florida Georgia ... Michigan ... Illinois ... Wisconsin. Arkansas ... Tows ... Alabama The Neb York and l

Kansas Te of the size the size of the size of