(2)
$$\begin{cases} x^{1} + y^{1} + (x+y)xy = 13 \\ x^{1}y^{1} \\ x+y = 36, \end{cases}$$

2. Find the number of variations of m different letters taken r together; also the number of such variations, when each may enter 1, 2, 3, etc., or r times in each variation.

If the number of variations of a+b things taken two together be 56, and of a-b things 12, find the number of combinations of a things, taken b together.

3. State the Binomial Theorem, and prove it when the index is a positive integer.

Expand to five terms, $(a-3x)^{-\frac{1}{2}}$.

4. Find the present value of an annuity A for n years at compound interest.

The reversion of a freehold estate worth P pounds per annum to commence a years hence is to be sold. Ascertain its present value at R per cent. per annum compound interest.

5. Define a continued fraction, and illustrate the method of converting a quadratic surd to a continued fraction.

Express as continued fractions

(1)
$$\sqrt{11}$$
; (2) $\sqrt{13}$; (3) $\sqrt{17}$.

6. What is a recurring series?

Explain what is meant by the scale of relation of a recurring series.

Sum to n terms, and ad infinitum the series

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + +$$

- Find the radii of the inscribed and escribed circles of a triengle in terms of the sides and angles.
 - 8. In any triangle prove:

(1)
$$\frac{\sin (B-C)}{\sin (C-A)} = \frac{(b^2-c^2) \sin B}{(c^2-a^2) \sin C}$$
.

(2) Area =
$$\frac{1}{2} (b^2 + c^2) \frac{a \sin B \sin C}{b \sin B + c \sin C}$$
.

- 6 9. Show how to expand aⁿ in a series of ascending powers of x.
 - 10. State Demoivre's Theorem, and assuming its truth, prove,

(1)
$$\cos a = 1 - \frac{a^2}{1.2} + \frac{a^4}{1.2.3.4} \dots$$
 etc.

(2)
$$\sin a = a - \frac{a^4}{1.2.3} + e.c.$$

II. Sum to n terms:

 $\sin \theta - \sin (\theta + a) + \sin (\theta + 2a)$, φ , and deduce the sum of θ terms of the sense $\cos \theta - \cos 2\theta + \cos 3\theta \dots$, etc.

First Examination (Pass.)

1. (1) Given
$$\begin{cases} x:y::a:b \\ x^{0}+y^{0}=c^{0} \end{cases}$$

find the values of x and y.

(2) Given
$$\begin{cases} 2x + 4y - 3i = 22 \\ 4x - 2y + 5i = 18 \\ 6x + 3y - 2i = 31 \end{cases}$$

find the values of x, y, and z.

2. Solve the following equations:

(1)
$$\begin{cases} x^{1} + y^{2} = 41 \\ xy = 20 \end{cases}$$

$$2) x^4 - 4x^2 + 6x^4 - 4x - 15 = 0$$

(3)
$$\begin{cases} x^{1} + xy + y^{1} = 7 \\ x^{4} + x^{2}y^{2} + y^{4} = 21 \end{cases}$$

- 3. Define an arithmetical and a geometrical series.

 (1) Find the subtreem and the sum of a
- (1) Find the seth term, and the sum of a terms of an arithmetical scries.
- (2) Insert five arithmetical means between 3 and 16.
- 4. In a geometrical series, if the ratio be a proper fraction, show that the sum of the series when the number of terms is increased indefinitely has a limiting value.

The limit of the sum of a geometrical series is $3\frac{1}{2}$, and the second term is $\frac{-5}{2}$; and the series.

- 5. Find three numbers in geometrical progression such that their sum shall be 21, and the sum of their squares 189.
- 6. Define the trigonometrical ratios of a angle less than 90°, and prove:

(1)
$$\sin^2 A + \cos^2 A = 1$$
.

(2)
$$\sin A \cos A = \frac{1}{\tan A + \cot A}$$

7. Prove the following formulæ:

(1)
$$\sin \overline{A-B} = \sin A \cos B - \cos A \sin B$$

(2)
$$\tan \frac{1}{2} A = \frac{1-\cos A}{\sin A}$$