forward by tho twisting movement of the di es, nvery revolution driving it against the cutters, whereby pry effective trituration is effected of the fibrous and other un the whole thens reduced to a pulpy, ho composed portions, and out through orifice., of may siction that pay be found suitabl on to a syatem of rollers, which carry it torward to traya, where it is cut into lengths, and either carri d or passod along a tramway to the Jrying sheds, wherr in about thror days it becomes suticiently dry to permit of its being taken from the portable trays, and stacked in open racks of a some what special consiruction, but the s is merely a question of getting the best ventilation in the smullest space, where the fiaal drying is completed.
The great feature, as it appears to us, in the whole of this manipulation, is the breaking ep of the eellular tissues of the peat, which cuntain what may not inaptly be called the fixed moisture; the mere hygroscopic or free water ian always be readily got rid of, but fine and cluse trituration is absolutely necessary to enable th. other to be removed, and that this is really realised the remarkable shrinkage which takes place in the ble ks or briquettes in drying is the best and most tangible proof. Thu con lensed peat, when mado ready for the market, which, we are assure d, dues not require mor, than eight days at the very outsid., is of groat firmness and solidity, and quite as strong in its resistance to a cutting cdg" as many of our softer woods As to its inthumatice qualities, we can only say that we saw a bright, clear fire burning in one of the office-rooms at Messrs. Clay ton's which was made up of the condensed peat, and which was distinctly most admir, bly adapted to cooking. Until further experiments have been male it is impossiblo for us to give any data as to what may be dio water-evaporating power of this new fucl; but, judging from appearances, we are disposed to believe that it will be fuund high, whilst as to the reduction of iron in blast furnaces, w. are prepared at once to say-and our , xperiences with wood charcoal has not beeninconsiderable -that it is admirably a.lapted for that use. Tho difticulty in this prucess has always been to get the peat in a sufficiently solid form to resist the pressure of blast just at the tuyeres, but we believe that Messis. Clayton, Son and Howlett's pateni froduces it so condensed that it will. be found equal to sustaining the impingement of a pillar of blast of, say, 2 lb . to $2 \frac{1}{2} 1 \mathrm{l}$, which is amply sullicient. We may al-o call the attertion of the manufacturers of charcoal timned-plates, whose supplies of voo d are necessarily daily decreasing, to this process, which places within their reach a fuel admirably adapted for use in their hollow and sinking-down fites."
It is stated that this fucl can be prepared in Euglend at a cost of from five to six shillings per ton of the dry briquettes. The cist of production here should be, if auything, less than that, and would moreover give employment to hundreds of our population who now go annually to work in the factories aud bick-fit lds of the states.

MILL'S FUEL ECONOMISER.-(See page 45.)

Mr. R. Mill, of Val Plaisant, Jersey, has lately patented a simple and, as it seems, very effective arrangement of nubes for promoting the circulation of water in steam boilers, while at the same time increasing the heating surface, besides possessing collateral advantages which will be mentioned further on. The accompanying drawings illustrate some modes of carrying this invention into effect. Fig. 1 is a vertical section through an ordinary Cornish boiler; Fig. 4 is a horizontal section through the flue of the same; and Fig. 2 is a front elevation. Two pipe systems are shown over the grate, bent serpentine fashion, or similarly joined by bends, as shown; and each connected with its side of the boiler, viz., at the back, connected to the water space over the crown of the furnace, and in front connected to the water spaco near the bottom of the fluo; A is a circulation cock, and Ba blow-off cock; by shutting the former, and opening the latter, the tubes may be cleared of any sediment, though very little deposit takes place because of the scouring action of the rapid circulation. The pipes are supported by brackets, Fig. 3 is a front elevation of a Cornish boiler, fitted with two similar pipe systems, but without circulation cocks. There is bo-ides shown a thisd system, in the centre of the flue, and which will be described with referenco to Fig. 5. Fig. 5 is a vortical longitudinal
section of a furnace ltuo for a Cornish, Lancashiro, marine, or other furnnee fue boiler. D is the lower limb of a pipe system, and is by the pipo F connected to the water space in the lower part of the boiler, close oy the ashpit, or frout side of the bridgo. Where the pipe passes tbrough the grate the bars are cut short, and supported from their neljoin' ng bars, or in any other suitable manner. F is the upper limb of the system, which is carried to the back of the boiler and terminates in the water space at or near the furnace crown. This arrangemeat may, for very small furuace flues, be used alone, but for larger flues, in combination with the pipe systems described, with reference to Figs. 1. 2, and 3, and either separa from or connected to them.

Fig. 6 is a vertical elevation of an egg-ended boiler, fitted with two pine systems, one on ench nide, and with their tubes arranged verticaily, or slanting one abovo the other, but 80 as to leave the middle of the furnace clear. I, K , and L are three tubes, connected together by double bends, or in ono piece bent to the shape. The pipe I runs along the whole length of the underside of the boiler, and has its exit in the water space at the back ond of the boiler; the pipes K and L are arranged under the pipe I, but only in the furnace part of the lue. L runs to the front of the brickwork setting, and is by the pipe M connected to the water space at the front of the boiler: N is the circulation cock, aud 0 the blow-off cock, as described with reference to Figs. 1, 2, and 3.

As to the advantages resulting from the application of these circulating tubes, some experience, extending over from two to eloven months, has already been zained in respect to land boilers. F'irstly, a clear and considerable saving in fuel, because of the additional and effective heating surface, and increased circulation, and secondly, a saving in wear and tear in the furnace crown or in the bottom plates as regards boilers fired underneath, because of the equalisatiol of the heat given out in the furnace, a great part of it being used to heat and ovapornte water drawn from other parts of the boiler, instead of as heretofore, being for the greatest part absorbed by the plates over the furnace, which thus do many times more work than any other part of the boiler. Unequal expansion, with its disadvantages, is also lessened. Thirdly, obtaining a much lower temperature at, and in front of the furnace door, which by the application of this inv ntion, has been effected. Fourthly, a savin in the wear and tear of the brickwork in $^{\text {a }}$ the furnace of externally-fired boilers, as it remains black instead of being red, or white hot, thereby preventing the possibility and inconvenient stoppagis for relining.-Ẽngineer.

CULINARY BOILER.-(See page 6l.)

Mr. Israel Kinney, of London, Canada, is the inventor of the novel form of culinary vessel represented in our illustration. The object sought is to provide a means of conducting away vapours arising from the cooking article, so that they will pass into the stove and up the chimney, and thus not be disseminated through the house. This is effected by casting the side wall of the pot with a vertical recess, extending down from the top to the bottom, following the offset made by the pit. The outer edges of the recess, down to the plane of the offet for the pit, are formed with fianges to reccive a sheet metal slide, A, which closes the recess and preserves the circular form of the vessel, and at the same time forms a flue. The papours rising are drawn down through tho latter, and thence into the stove. This improvement is applicable to all vessels used in cooking. Patented August 27, 1872.-Scientific American.

The total annual producion of ion is estimated at ab, ut a levey and one-eighth millions of to . s for the whole wor. d , in 1869 , and must have i icroased greatly in more recent yrars. At that time Engla \cdot d pioduc d oier five millions; the United States of North America, over one nd i-half milliun = , Francencarl, onv and s-yuarter millions ; Prus-ia rather more than one million ; Belgium not quite half a million, the Austrian Empire a third of a milli, n, Sweden and No, way nearly 400,000 ; hussia and thir Zollverefn nearly half a milliun tons between them. of which fou - evenths came from the former. Spain and It: ly made up nearly 100 .rimu tons, two-fifths from the latter Tho in reaso in the productior of the United Slates in the five precediog years was nearly 6: per cent; in Prussia, 36 per cent. ; and in: England, in six year;, 26 per cen.

