- (1) $a^3 8a^2b + 8ab^2 b^3 + a^2x b^2x$.
- (2) $x^4 (a^2 b c)x^2 a(b c)x + bc$. (3) $(a b)^6 b^6$.
- 2. Examine in what cases $a^n \pm b^n$ is divisible by $a \pm b$.
- 8. Prove the rule for finding the L. C. M. of two algebraic quantities.

Find that of

$$x^2-9y^2$$
, $x^3+8x^2y+4xy^2+12y^3$, $x^3-8x^2y+4xy^2-12y^3$.

4. Simplify

(1)
$$\frac{yz}{x(x^2-y^2)(x^2-z_2)} + \frac{xx}{y(y^2-z^2)(y^2-x^2)} + \frac{xy}{z(z^2-x^2)(x^2-y^2)}$$
(2)
$$\frac{ab+bc}{ca}(\frac{1}{bc} - \frac{1}{ab}) + \frac{bc+ca}{ab}(\frac{1}{ca} - \frac{1}{bc}) + \frac{ca+ab}{bc}(\frac{1}{ab} - \frac{1}{ca}).$$

- p+1=q.

6. (1) If
$$y+z=ax$$
, $z+x=by$, $x+y=cz$, then
$$\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} = 1.$$

(2) If x+y+z=0, then

$$x^{2}(y+z)+y^{2}(z+x)+z^{2}(x+y)+8xyz=0.$$

7. Show that $x^2 + y^2 > 2cy$.

- (1) $a^3+b^3 > a^2b+b^2a$, if the greater of a and b be positive.
- (2) $(a+b-c)^2+(a+c-b)^2+(b+c-a)^2>ab+bc+ca$.
- Assuming that $a^m \times a^n = a^{m+n}$ for all values of m and n, show that

$$a^{\frac{p}{q}} = q \sqrt{a^p} = \left(\sqrt[q]{a}\right)^p$$

9. Shew how to extract the square root of
$$a + \sqrt{b}$$
.

$$\frac{2 + \sqrt{2}}{\sqrt{2} + \sqrt{3 - 2}\sqrt{2}} + \frac{2 - \sqrt{2}}{\sqrt{2} - \sqrt{8 + 2}\sqrt{2}}$$
Simplify

Rationalize the denominator of

$$\frac{1}{1+\sqrt{\frac{2}{2}+\sqrt{3}}}$$

- 1. If $x^3+y^2+z^2+2xyz=1$, show that
- (1) $\{(1-y^2)(1-z^2)\}^{\frac{1}{2}}+\{(1-z^2)(1-x^2)\}^{\frac{1}{2}}+\{(1-x^2)(1-y^2)\}^{\frac{1}{2}}=$

$$(2) \left\{ \frac{1-x}{1+x} \cdot \frac{1-y}{1+y} \right\}^{\frac{1}{2}} + \left\{ \frac{1-y}{1+y} \cdot \frac{1-z}{1+z} \right\}^{\frac{1}{2}} + \left\{ \frac{1-z}{1+z} \cdot \frac{1-x}{1+x} \right\}^{\frac{1}{2}} = 1.$$

- 2. Solve the equations
- (1) $zx+xy-yz=x^2-a^2$, $xy+yz-zx=y^2-b^2$, $yz+zx-xy=z^2-c^2$.
- (2) $(x+y)a^2=x$, $(x+y)b^2=y$; explain the results.
- .8. Sum the following series:
 - (1) $1^2+2^2+3^2+\dots$ to n terms.
 - (2) $\frac{2}{3} + \frac{4}{3^2} + \frac{6}{3^3} + \frac{8}{3^4} + \dots$ to infinity if convergent;
- 4. (1) Find the whole number of permutations of n things when each may occur once, twice, thrice.....up to r times.
- (2) Find the sum of the different numbers that can be formed with m digits a, n digits b, &c., the entire series of $m+n+\ldots$ digits being used in forming each number.
- 5. If the Binomial Theorem holds for a positive integer, shew that it holds for a positive fraction.

$$\left\{\frac{x}{x-1}\right\}^{\frac{1}{x}} = 1 + \frac{1}{x^2} + \frac{x+1}{\left|\frac{2}{x}\right|} \cdot \frac{1}{x^4} + \frac{(x+1)(2x+1)}{\left|\frac{3}{x}\right|} \cdot \frac{1}{x^6} + \dots$$

6. (1) As a problem in combinations, without reference to mul-

tinomial theorem formulæ, find the coefficient of anbron in the expansion of $(a+b+c)^{5n}$, n being a positive integer.

(2) $C' = \frac{n \cdot n - 1 \cdot \dots \cdot (n - r + 1)}{|r|}$, then the coeff. of the mid-

$$1 + C_1^n C_1^{n-1} + C_3^n C_3^{n-3} + \dots C_{\frac{n}{3}}^n C_{\frac{n}{3}}^{\frac{n}{3}}$$
 or

$$1 + C_1^n C_1^{n-1} + C_2^n C_2^{n-2} \dots C_{\frac{n-1}{2}}^n C_{\frac{n-1}{2}}^{\frac{n+1}{2}}$$

7. Show that $e = 1 + x + \frac{x^2}{13} + \dots$

If in the equation

$$a = x$$

x be a small quantity whose powers above the second may be negjected, show how to find x approximately.

8. Examine in which cases the series

$$\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{8^p} + \dots$$

is convergent or divergent.

If the series be convergent it is greater than

$$\frac{1}{2} \cdot \frac{2^{p}-1}{2^{p-1}-1}$$
, but less than $\frac{2^{p-1}}{2^{p-1}-1}$

- 9. (1) Every convergent is nearer to the continued fraction than any of the preceding convergents.
- (2) Any convergent is nearer to the continued fraction than any other fraction which has a smaller denominator than the convergent has.
- (8) The ratio between the area of a regular decagon described about a circle and that of another within the circle is

$$\frac{8}{7} + \frac{1}{4} + \frac{1}{4} + \dots$$

SOLUTIONS OF ALGEBRA EXERCISE IN DECEMBER

- 1. Left side = $\frac{s}{a} 1 + \frac{s}{b} 1 + \dots = \dots$
- 2. Left side = $1 \frac{a}{a} + 1 \frac{b}{a} + \dots$ $=n-\frac{a+b+\dots}{n-1}-n-1.$
- 8. It should be s=a+b+c. Then $s(s-a)(s-b)(s-c)=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4$ =4(xy+yz+zx).
- 4. (1) Evidently a+b+c=x+y+z, and 2(b+c)=2x+y+z; : b+c-a=x, &c. By preceding question a4+..... =-(a+b+c)(b+c-a)(c+a-b)(a+b-c)=-(x+y+z)xyx.
 - (2) 8abc = (x+y)(y+z)(x+x) = (x+y+z)(xy+yz+zx)-xyz.
- 5. $x^2-yz=a^2$; ... $x^3+xyz=a^2x$, &c.
 - $\therefore \frac{a^2x + b^2y + c^2z}{x + y + z} = \frac{x^3 + y^3 + z^3 8xyz}{x + y + z}$

 $x^2+y^2+z^2-xy-yz-zx=a^2+b^2+c^2$.

6. xyz + x + y + z

$$= \frac{1}{abc} \{ (b-c)(c-a)(a-b) + bc(b-c) + : a(c-a) + ab(a-b) \} = 0.$$