$$E_{I}^{*} = \frac{G_{2}}{G_{1} + G_{2}} \cdot \left(-c_{1} + (c_{1} - a_{1}) \cdot (1 - \beta_{1}(\epsilon_{1}^{*}))\right) + \frac{G_{1}}{G_{1} + G_{2}} \cdot \left(-c_{2} + (c_{2} - a_{2}) \cdot (1 - \beta_{2}(\epsilon - \epsilon_{1}^{*}))\right), \tag{3.35}$$

where

$$G_1 = (c_1 - a_1) \cdot (1 - \beta_1(\epsilon_1^*))', \ G_2 = -(c_2 - a_2) \cdot (1 - \beta_2(\epsilon - \epsilon_1^*))', \tag{3.36}$$

and

$$E_S^* = -b_2 + (b_2 + d_2) \cdot \beta_2(\varepsilon - \varepsilon_1^*) \ (= -b_1 + (b_1 + d_1) \cdot \beta_1(\varepsilon_1^*)). \tag{3.37}$$

If
$$b_1 + d_2 < (b_1 + d_1) \cdot \beta_1(\varepsilon)$$
, (3.38)

then

$$\varepsilon_1^* = \varepsilon, \ q_1^* = 1, \ q_2^* = 0$$
 (3.39)

$$E_I^* = -q_1 \cdot (1 - \beta_1(\varepsilon)) - c_1 \cdot \beta_1(\varepsilon) \tag{3.40}$$

$$E_S^* = -b_1 \cdot (1 - \beta_1(\varepsilon)) + d_1 \cdot \beta_1(\varepsilon). \tag{3.41}$$

Proof

(i) With (3.27) and (3.29) equilibrium condition (3.6) is identically fulfilled, whereas (3.7) becomes

$$0 \ge q_1 \cdot (-b_1 + (b_1 + d_1) \cdot \beta_1(\varepsilon_1^*)) + q_2 \cdot (-b_2 + (b_2 + d_2) \cdot \beta_2(\varepsilon - \varepsilon_1^*))$$

for all q_1, q_2 such that $q_1 + q_2 \le 1$. This inequality is always fulfilled if and only if

$$-b_1+(b_1+d_1)\cdot\beta_1(\varepsilon_1^*)\leq 0$$

$$-b_2+(b_2+d_2)\cdot\beta_2(\varepsilon\!-\!\varepsilon_1^*)\leq 0$$

which is equivalent to (3.29).

(ii) Using (3.27), (3.32) and (3.33), equilibrium conditions (3.6) and (3.7) reduce to $q_1^* \left(-c_1 + (c_1 - a_1)(1 - \beta_1(\epsilon_1^*)) + q_2^* \left(-c_2 + (c_2 - a_2)(1 - \beta_2(\epsilon - \epsilon_1^*)) \right) \right.$ $\geq \int_0^{\epsilon} \left[q_1^* \left(-c_1 + (c_1 - a_1)(1 - \beta_1(\epsilon_1)) + q_2^* \left(c_2 + (c_2 - a_2)(1 - \beta_2(\epsilon - \epsilon_1)) \right) \right] dF(\epsilon_1)$ (3.42)

for all distributions F on $[0, \epsilon]$, and