YOUNG: Forms, Necessary and Sufficient, of the Roots of

The Root Constructed from its Fundamental Element.

§41. From R_1 , as expressed in (72), derive R_0 , R_2 , etc., by changing w into w^0 , w^2 , etc. By §5, the root of the equation f(x) = 0 is

$$R_0^{\frac{1}{n}} + R_1^{\frac{1}{n}} + R_{\vartheta}^{\frac{1}{n}} + \dots + R_{n-1}^{\frac{1}{n}}.$$
 (73)

To construct the root, we have to determine the particular u^{th} roots of R_0 , R_1 , etc., that are to be taken together in (73). When w is changed into w^* , let A_1, ϕ_1, ψ_1 , etc., become A_s, ϕ_s, ψ_s , etc., respectively. Then

$$\begin{array}{l}
R_s = A_s^n (\phi_{s\sigma}^{\sigma} \psi_{s\tau}^{\tau}, \dots, X_{s\delta}^{\delta} F_{s\beta}^{\prime \beta}) \\
R_s^{\frac{1}{n}} = w' A_s (\phi_{s\sigma}^{\sigma} \psi_{s\tau}^{\tau}, \dots, X_{s\delta}^{\delta} F_{s\beta}^{\frac{1}{n}})
\end{array}$$
(74)

therefore

w' being an n^{th} root of unity. Let the integers not greater than n that measure n, unity not included, be

$$n, y,$$
 etc. (75)

For instance, if $n = 3 \times 5 \times 7 = 105$, the series (75) is

105, 35, 21, 15, 7, 5, 3.

The n^{th} roots of unity distinct from unity are the primitive n^{th} roots of unity, the primitive y^{th} roots of unity, and so on. For instance, the series of the 105th roots of unity distinct from unity, containing 104 terms, is made up of the 48 primitive 105^{th} roots of unity, the 24 primitive 35^{th} roots of unity, the 12 primitive 21^{st} roots of unity, the 8 primitive 15^{th} roots of unity, the 6 primitive 7^{th} roots of unity, the 4 primitive 5^{th} roots of unity, and the 2 primitive 3^{d} roots of unity. The general primitive n^{th} root of unity being w^{s} , give w' in the second of equations (74) the value unity for every value of z included under e. Then

$$R_{\epsilon}^{\frac{1}{n}} = A_{\epsilon} (\phi_{\epsilon\sigma}^{\sigma} \psi_{\epsilon\tau}^{\tau} \dots X_{\epsilon\delta}^{\delta} F_{\epsilon\beta}^{\beta})^{\frac{1}{n}}.$$
 (76)

Taking any other term than n, say y, in the series (75), since y is a factor of n, let yv = n. Then w^v is a primitive y^{th} root of unity. Hence, since w^e is the general primitive n^{th} root of unity, all the primitive y^{th} roots of unity are included in w^{ev} . If w', in the second of equations (74), be w^a when z = v, let it have the value w^{ea} when z = cv. Then

$$R_{ev}^{\frac{1}{n}} = w^{ea} A_{ev} \left(\phi_{ev\sigma}^{\sigma} \psi_{ev\tau}^{\dagger} \dots X_{ev\delta}^{\delta} F_{ev\beta}^{\beta} \right)^{\frac{1}{n}}.$$
 (77)

Form equations similar to (77) for the remaining terms in (75). In this way, because the series of the n^{th} roots of unity distinct from unity is made up of the primitive n^{th} roots of unity, the primitive y^{th} roots of unity, and so forth, all the terms 1, 2, ..., n-1 are found in the groups of numbers represented

254