$$
\begin{equation*}
\therefore \quad \quad I=s \frac{\sin \left\{\frac{h+\left(\frac{1}{2}-m\right) \sigma}{\cos \{ } \frac{h+(1-m) \sigma\}}{} .\right.}{} \tag{65}
\end{equation*}
$$

See Supp. to Manual of Dominion Land Surveys.
For the numerical value of m see p. 76.
In eq. (65) it is assumed that the distance s is equal to the chord $A C^{\prime}$. If A and 3 are stations of a trigonometric survey and s is obtained by the solution of a triangle, then it is the distance $A B$ reduced to sea level. The correction to s for elevation is

$$
s \begin{gathered}
H_{1} \\
\rho
\end{gathered},
$$

$H_{\mathbf{1}}$ being the height of A above sea level. Also the correction to reduce from the are to the chord is

$$
s_{4}^{\prime}\left(\frac{s}{\rho}\right)^{2}
$$

so that the length of the chord $A C^{\prime}$ is

$$
s\left(1+\frac{I_{1}}{\rho}\right)\left\{1-\frac{1}{24}\left(\frac{s}{\rho}\right)^{2}\right\}
$$

the second correction only becoming appreciable for considerable distances.

Reciprocal zenith distances-

If the zenith distances z and z^{\prime} be observed simultaneousl y at the two stations the effect u_{t}^{e} refraction is eliminated, if it can be assumed to affect the two zenith distances equally. Thus, returning to the above equation for $I I$, we have

$$
\begin{aligned}
& B A C^{\prime}=90^{\circ}-z-r+\frac{\sigma}{2} \\
& A B C^{\prime}=180^{\circ}-z^{\prime}-r
\end{aligned}
$$

But we have also

$$
\begin{gathered}
A^{\prime} A B=z+r=180^{\circ}-\left(z^{\prime}+r\right)+\sigma \\
r=\frac{180^{\circ}-z-z^{\prime}+\sigma}{2}
\end{gathered}
$$

so that
which therefore becomes known. Substituting this we have

$$
\begin{aligned}
& B A C^{\prime}=\frac{z^{\prime}-z}{2} \\
& A B C^{\prime}=90^{\prime}-\frac{z^{\prime}-z+\sigma}{2}
\end{aligned}
$$

\therefore substituting in the first above expression for $I I$ gives

$$
\begin{equation*}
I I=s \frac{\sin \frac{1}{2}\left(z^{\prime}-z\right)}{\cos \frac{1}{2}\left(z^{\prime}-z+\sigma\right)} \tag{66}
\end{equation*}
$$

s having been corrected for elevation, and if necessary for curvature.

