TRIGONOMETRY-Honors.

PROFESSOR A. R. BAIN (Victoria), EXAMINER.

- 1. If the angle at the centre of a circle which is subtended by the side of a regular octagon be taken as the unit of measure, by what number is that angle represented whose circular measure is $\frac{22}{7}$ or $\frac{22}{7}$
- 2. If the minute-hand of a clock is 2 feet 11 inches in length, and if $\pi = \frac{22}{7}$, how far will the point of the hand move in 12 minutes?
 - 3. Find θ in each of the following equations:
 - (a) $2 \tan^2 \theta + \sec^2 \theta = 2$.
 - (β) $\sin \theta \cos \theta + \sin^2 \theta = \frac{1 + \sqrt{3}}{4}$
- 4. The cot $\varphi = 1 + \sqrt{2}$; find all the other functions of φ , supposing φ to be in the third quadrant.
 - 5. Prove the following quantities:

nd-

ess

ms

nd

an

ey

nt

- (a) $\frac{\cos{(\alpha+\beta+\gamma)}}{\cos{\alpha}\cos{\beta}\cos{\gamma}} = 1 \tan{\alpha}\tan{\beta} \tan{\beta}\tan{\gamma} \tan{\alpha}\tan{\gamma}$.
- (b) $\frac{\sin x + \sin 3x + \sin 5x}{\cos x + \cos 3x + \cos 5x} = \tan 3x$.
- (c) $1 + \tan x \tan \frac{1}{2}x = \sec x$.
- 6. Show that $\tan^{-1}\frac{1}{7} + 2 \tan^{-1}\frac{1}{3} = 45^{\circ}$.
- 7. Prove that in any triangle $\cos A = \frac{b^2 + c^2 a^2}{2bc}$, and then find the formula which gives the value of $\tan \frac{1}{2}A$ in terms of the sides.
- 8. In a given triangle $A = 30^{\circ}$, $B = 60^{\circ}$ and $C = 90^{\circ}$, and the perpendicular from C upon c = q. Show that the area of the triangle $= \frac{2q^2}{\sqrt{3}}$.
- 9. The angle of elevation of a tower is observed. At a point a feet nearer, the elevation is the complement of the former; b feet nearer still, it is double the first elevation. Show that the height of the tower is $\sqrt{(a+b)^2 \frac{a^2}{4}}$.
- 10. If the angles A, B, C of the triangle ABC be as 2, 3, 4 spectively, then $2 \cos \frac{A}{2} = \frac{a+c}{b}$.