GRINDING WHEAT BY ELECTRICITY.

THE l:kctomad II irhit has published an illustrated description of a tlouring mill at Laramie, Wgom. ing Territory; operated by sprague electric motors. The capacity of the mull was too barrels daily. It is buatt of stone, thee stories and basement high, and is equipped with stean heat and electric lughts. The motors are used exclusivels for power to run the mill, which has been in successful operation for two months. The system of millang is the "gradual reduction" process, and the yield and quality are equal to any in the States. The power is divided into units of 25 horsepower each. One motor drives all the purifying machinery; the wheat-clemers and all the elevators and conveyors. The other motor runs the seven double sets of rolls and the flour packers. From the experience gained, Mr. Jones, the manager, states that he would advise mill-bulders who use electric motors to sub. divide their power into three units, by taking all wheat cleaning and scouring machinery and all elevators and conveyors runming directly in their interest from the purifer line, and to apply a motor of proper capacity directly to them by means of a counter-shaft. He suggests this, owing to intermittent use of these machines. All the power is on the roller thoor, one motor being belted up through one floor to the purifier line. He finds he has a lower percentage of loss ot indicated power by having his engine in the mulls instead of in a separate bulding, which would necessitate long shafting and belts. The substitution of three units for two would also afford another reduction in friction, as the cieaning machines could then remain idle much of the time, and less shaftugy and belting would be reguired. The motors are run at constant speed and are subject to little change, and that a slight and piadual increase in speed from tume of starting until the diy's run is complete. The increase is due to the varation in the temperature of the armature and is in about three proportions: At starting the roller line-shaft makes 210 revolutions per munute ; at nught the speed has increased to 224 revolutions. The motors are wound for 230 volts, but are run at 226 volts, and it requires in current an average of 150 amperes to drive the mill to its full capacity. A variation of pressure on these machines will vary the speed in about the same proportion as steam pressure will tary the speed of a steam-engme. A variation of one volt will produce the same effect on the motor as one pound of steam. It is easy to control the pressure to within one or two volts.

OVER-SPEEDED PLANING MACHINES.

THE stram upon the cylinder bolts, and the liability of the knives flying off in over-speeded planing machines, is not the only element of danger, says one of our American contemporaries. Over-
speeded pulleys are just as liable to lly to pieces and do damage to the machune, as well as the operator. It is not practical to use pulleys on the cylinder shaft of less diameter than four and a half inclies, as smatler ones soon destroy the belts.
Neither is it practical, as planing machunes are constructed, to use pulleys on the back shaft of a greater diameter than twenty inches. Otherwise the back shaft would be ton high to allow the matcher belts to run in their proper place. Now suppose the pulleys on the back shaft are twenty mehes diameter, and four and a half inch face, which would be the right proportion for this purpose, with a rim averaging three cighths of an inch thick. This pulley, in order to drive the cylinder 5,000 revolutions per minute, would require a speed of 1,125 revolutions per minute. Allowing the weight of the rim to be thinty pounds, witich is about the average for pulleys of this size, the centrifugal strain by rules already given, would be as follows: The circumference in feet (5,2375 , multuphed by the speed 1,125 revolutions), and divided by sixty, equals 98,202 , the speed in feet per minute. The square of this number multuplied by the weight, and dwided by thirty-two times the radius in feet, equals the centrifugal strain in pounds. The square of $98=9:-86,4,3652$. This multiplied by therty and the proluct divided bs 20.60 , or thirty-two times the weight of the run, gives 30851.79 pounds.
The rim of this pulley contans a sectional area of about one sequare inch, and the tensile strength of the best samples of cast ron, as determined by Major Wade, of the Enited States Ordinance department, is from 15,000 to $t 6,000$ pounds to the square inch. It will be remembered, however, that those tests were made upon the basis of cast iron one moch square, and of different lengths, and from the best samples, perfectly sound and free from dirt or ar holes, and it is a question whether the average castings obtained from the foundry from day to das will come anywhere near to this standard of strength.

Suppose every pulley was perfect and the tron up to the standard of strength, there is then only a margin of safety of 3810.40 pounds which is far below the standard of safety ; for no pace of machinery in constant use and submitted to the same constant strain from day to day should be taken over its ultimate strength. Again, the shape of the material and the manner in whinch the stran is applied, has much to do with it. If the pulley rim instead of being a that piece four and a half inches wide, and three-eighths of an inch thick, were put in the shape ot a square bar, which would be about one inch square, It is reasonable to suppose that it would stand a much greater strain than in its present form, and in the manner in which the stran is applied. The same rule mas be appled to this which is applied tobeams and girders and it is necessary to state what every one knows that a cast iron beam four and a half inches wide and threeeighths of an inch thick will sustan more than four tumes the load when placed edgewise than it would if placed thatwise and there is but one conclusion that we can arrive at and that is that pulleys of the dimension given are not safe at such high speed. Asile from the question of safety there is also a question of econom; involved that is worth c insideration.

POINTS TO REMEMBER.

AGMLLON of fresh water contains 231 cubic inches, and weughts 8.4 poundis (U. S. Standard.) A cubic foot of water contains $7!2$ gallons, or $1,72 \mathrm{~S}$ inches, and weighs $62{ }^{\prime} 2$ pounds.
The friction of water in pipes is as the square of the velocity. Doubling the diameter of a pipe increases its capacity four times.
To find the pressure in pounds per square inch of a column of water, multuply the height of the column in feet by 0.433 . Approximately we generally call every foot elevation equal to $'_{2}$ pound pressure per inch ; this allows for ordinary friction.
In calculating horse-power of steam boilers, constder for:
Tubular boolers, is square feet of heating surface, equivalent to one horse-power, fine boilers, is square feet, equivalent to one horse-power ; cylinder boilers, 10 square fect of heating surface, equivalent to one horsepower.
Each nominal horse-power of boilers requires \boldsymbol{t} cubic foot of feed water per hour.

Consumption of fuel averages $7^{1 / 2}$ pounds of coal, or $1 ;$ pounds of dry pine wood, for every cubic foot of water evaporated.
Ordinary speed to run steam pumps, when the duty is not heavy; is 100 feet of piston travel per minute.
To find the quantity of water elevated in one minute, rumning at too teet of piston travel per minute. Square the diameter of water cylinders in inches and multuply by four. Example: Capacity of 25 -inch pump is desired. The square of the diameter (5 inches) is 25 , which, multiplied by 4 , gives 100 , which is gallons per minute (approximately.)
To find the diameter of a pump cylinder to move a given quantity of water per minute (100 feet of piston travel being the speed), divide the number of gallons by t, then extract the square root, and the product will be the diameter in inches.
To find the capacity of a cylinder in gallons. Multiplying the area in inches by the length of stroke in inches; divide this amount by 23 (which is the cubical contents of a gallon in inches), and product is the capacuty in gallons.
The area of the steam piston, multiplied by the steam pressure, gives the total amount of pressure that can be exerted. The area of the water piston, multiplied by the pressure of water per square inch, gives the resistance. A margin must be made between the power and the resistance to move the pistons at the required speed -say 50 per cent.

GIVE THEM LIGHT.

WITH the return of warm weather, says the fioller Mill, come the perennial complaints about bugs in the bolting chests, coupled with anxinus inquiries after some effective way to get rid ot the little pests. The usual prescription is any good insect powder, preferably one not poisonous to human beings, to be run into the infested reels, or sprinkled upon the cloth when the mill is not running, repeating the dose until the bugs have all been killed or driven out of the machine. The objections to such a remedy are that it renders a considerable quantity of stock unfit for flour, and that it is not permanent but must be resorted to at more or less irequent intervals in every mill in which the "demd bugs" have effected a lodging. In other words, insect powder is local, not radical, in its operation.
In view of this discouragrag truth, it gives us pleasure
to recommend, on the authority of an experienced milles a simple and inexpensive methorl, satd to be prompt and lasting in its effects. It is based on the ascertained fact that bolting cloth bugs like evil-doers of a certain two. legged race- are accustomed to operate in the dark, and will at once guit work and "light out" when anybody lets the light in upon them. Here it is: Cut out the panels on the side, or, better, both sides, of the chen, and fasten ughtly across the openings pieces of canvas thin enough to allow the passage of a pretty strong light. This cure our informant says he first tried in a bus. bothercia mill of which he haid just taken charge, with the result that in a few days the reels throughout the mill were entirely and permanently depopulated.

Domier las discovent that brome is rewdered malleable by addang to $1 t$ from one half to two per cent. of mercury.
A workiman in the carson mime has tiscovered that drill points, healed to a chersy red witd tempered hy 1 e:ang driven into a har of leat, will bore through the himestst sted or phate-glass withour per. coptaly thuntung.

Ti) 1)kin. (it.Ass. -In drilling ghiss, stick a piece of stiffclay or putty on the part where you ash to make the hole. Makea hole in the putty the size you wain the hole, reaching to the phass, of course. Into this hole pour a litte mileen leat, when, unless it is very mick ghiss, the piece will mmediately drop out.
Mistaki Oll. is l.unkicatoos.-M. Thier, an engineer of
 cator which would prevent a weldmg toge ther of iron surfaces upon whinh much and rapia fnction is exercised. such iss turbline wheels, hats found the ordmary oil of mustard, mieded with staall guantirs of petrolemun, fish oil or other sumbry faty sulstances, answers the purpose in every respect and overcomes all the diticutlies hereto. fore experemeed with machinery where excessive friction disturtes the bhysime gualay of the metal used.
Deviers bok Siki:aching Emiky Choth.-An ingenous de vice for stretching emery cloth for use in the workshop consists of a couple of strips of wood about fourteen incles long. hinged longtudumally, and of round, half round, tringular or any othes shaje in cross section. On the inside faces of the wood strips are pointed studs thating into holes on the opproste sides. The strip of enerve cloth is hadd on to one set in the studs, and the "file." as It is called, closed, wheh fives the strips on one side. It is then similaty fixed on the other side, atnd thus constitutes what is called an "emery file," and which is a handy and convenient arrangement for workstoup use.
The frexpency of conthagration cauarl by electric light wires onducal the Electre Clut, of Phendelphato ingure moto the menns of preventugg them. It a recent meetugg the wrions nutomatic cut-outs proposed by difirem miventors were consileted, sonte athingh the heatung of a wre, sonce the action of a sjring pulling gainst an armature of a magnet. The old arraugenemt of a fusblite alloy cut-of was proncunced olyectuonable on account of internyptoon produced when it melteet, but this was obviseed hy an arrangement for throwng other fusible preces into the circuit one ffer the other. Thus a momentary merease of carrent would only cause a momentary stoppage. It was evident that there is a good fedd for inventors here, in devising an cflicemt saffyuard agairst coo strong currems that may acculently tee thrown upon a wire unable to carry them without hentung.-Si ientific 1 merican.
Following is a brief summary of the tests for the cast iron devised and practiced successfrully hy W. J. Keep. of Detroit. Mich.: When the tests are carried onst in their entirety 15 pounds of metal are melted in a plumbago crucible in a firebthck furnace drvien by a bhast at a prassure of 2.5 ounces per syuare inch. Three sets of test hars are nun fromi each melting. One uar is .5 inch square and is cast with the ends ag.unst a chill exactly 12.125 beches apart, Another tur is cast with this and is run from the same pate it is one inch wide and .z inch thick and is run against chills in the some way as the square tar When the ban haic hills in the same way as the squarre larr. When the bars hale been triminetl and boil thars and chills have atained the sane emperature, the sinkine is measurd himsting a gradualed wedpe betueen the end of each lars and its chill. A third bar is calked the lluad strip. The patem of this is one inch wide, 12 inches long and .05 inch in thickness. This is run from the end and is poured first. The strip rarely runs full, and its kngeth in iaches is taken as a mezsure of the fluidity of the metal. The fourth iare is called the crook strip. It is 12 inctes long, 1 inch wide and. 086 inch in thickness. On the centre of one side there is a rib 412 inch hirht. 2 inch wide at the hase and a inch wide at the top. The unepual shrinkage of the thin flat strip and of the the top. The unerpal shrinkige of the thin flat strip and of the
taper ribs causes a slight curse in the test prece. This when measured afiords valuable infurmation as to the properties of the iron and is called the "crook." The first and second hars are eated for transverse strongth and resistance to impact. The first test is made by a gradually applied weight, the deffection being measured at the sance tince. The resistance test is made by sulifecting the tans to a series of liows from a 25 -pound weight until it breaks, the fall being at first .5 inch and inctrasing .125 inch at a time. An Alsitrary scaic has teren constructed giving a value in pounds avoindupois on an assured valve for a foot-pound. After these tests have lwen made the depth of chill is determined, and the prain of the fracture is observed liy neeans of a pair of kences. The hardmess of the nelal is finally icsted hy means of Turver's
 scratch similer to a suanderd scratch.

