	I	II	III	IV	FORMULA.
Carbon dioxide*	29.27	27.96	29.06	27.78	30.49
Alumin a	37.88	36.42	36.70	36.12	35.55
Soda	20 19	22.41	22.65	22.86	21.48
Water	12.66	13.21	11.59	13.24	12.47

It has also been suggested that the formula may be written $3(Na_2CO_3) + (Al_2C_3O_9) + 2(H_6[Al_2]O_6).\dagger$

According to Friedel, the Tuseany Dawsonite when heated to 180° C. loses nothing but a little hygrometric water. Like the Canadian mineral it gives up both its "carbonic acid" and water at a red heat. The calcined residue also dissolves easily in hydrochloric acid. Neither the hardness nor the specific gravity of the European variety has been ascertained. For the Canadian mineral the original determinations were, H = 3, G = 2.40.

* The atomic ratios for I and II are as follows:

C	.665	.636	2
[Al ₂]	.369	.355	1
Na	.651	.723	2
0	2.764	2.696	8
${}_{0}^{H_{2}}$ \cdots	.703	.734	2

† Am. Jour. Sci. III. xxII. 157.