ances. There is still the large field of hypertrophy due to increased arterial pressure, and the pericardial adhesion. In all these cases, the individual fibres of the heart muscles of the affected regions have to contract under increased difficulty, they have to carry or contract against a greater load, and as a result of this, just as is the case with the skeletal muscles, with the muscles in the blacksmith's arm, and the muscles of the body in the all-round athlete, increased work brings about increased growth—brings about, that is to say, hypertrophy of the muscle.

Into the subject of the nature of this increased growth I shall enter in a few minutes' time, at present I wish to carry a word further this parallel between the behaviour of the cardiac and skeletal muscles, under circumstances in which the load is increased. If you take a skeletal muscle, for example, the gastrocnemius of the frog, so dear to the physiologist, and observe its contraction with gradually increasing loads, there are two points especially to be made out. In the first place the greatest amount of work is not performed with the smallest load, but there is a certain medium load with which the distance through which the load is pulled multiplied by the weight of the load gives the biggest result. This product of weight moved and the distance through which it is moved is the work done by the muscle. The most work, therefore, is done with a medium load. The second point is that with increasing weights fastened or brought to bear upon the muscle, that muscle in its resting state becomes more and more elongated, and with regularly increasing weights attached the shortening attained by the contracted muscle constantly diminishes. Or, to put the matter in a slightly different light, and to combine these two statements of fact, although with a certain medium load the greatest amount of work is done, nevertheless with that medium load the muscle in contracting does not attain to the same amount of shortening as it does with a lesser load

Let me now apply these observations to what is found in the ventricular muscles of mammals. Experimentally,