same value as E when h = unity and $\gamma =$ 100. E for any value of h equals h^2C . (C is termed a constant for the reason that when once computed for any set of conditions the corresponding value of E is derived for any height h by squaring h and multiplying into C.)

In Figs. 2 and 3 the angle of repose ϕ is platted as abscissa and the constant C in pounds as ordinates. The back of wall batter angle α is constant for a given curve or group of curves. In Figs. 4, 5 and 6 the back of wall batter angle is platted as abscissa. Positive values of α are given on the right of zero, and negative on the left. C is platted as ordinates as before. All values of C and E are for a portion of earth or wall one foot or unity in length.

Characteristics of Curves for Back of Wall Batter Constant.

By referring to the figures the following will be noted: In Fig. 2 the curve for back of wall batter $\alpha = 0$, and surcharge $\epsilon = 0$, Rankine and Rebhann both give values for C that agree. For $\alpha = 0$, and $\epsilon = \phi$ (angle of repose) Rankine gives increasingly higher values for C than Rebhann, as the angle ϕ increases from zero or hydrostatic pressure. In Fig. 3 curves are shown for $\alpha = -4^{\circ} 46'$, $\epsilon = 0$ and $\epsilon = \phi$. Also for $\alpha = -22^{\circ} 37'$, $\epsilon = 0$ and $\epsilon = \phi$. The apparent disagreement between the two theories is not so great, with one exception, as in the previous cases shown, and there appears to be no complete break-downs except in Rankine $\alpha = -22^{\circ} 37'$ and $\epsilon = 0$. The exceptional disagreement is also for $\alpha = -22^{\circ} 37' \epsilon = 0$. For example, for $\phi = 45^{\circ}$ Rankine gives the value of C equal 22.5 lb., while Rethann gives only 3.1 lb. The result from Rankine is over seven times as great as that obtained from Rebhann. As shown later, however, Rankine's theory breaks down for all negative back of wall batter angles, α .

Characteristics of Curves for Angle of Repose ϕ Constant.

In Figs. 4, 5 and 6, as previously stated, the back of wall batter angles, α , are platted as abscissa, with ϕ and ϵ constants for a given curve, and C as ordinates. Fig. 4 shows curves for $\phi = 45^{\circ}$ and $\epsilon = 0^{\circ}$ and 45° . For comparison, the curve for $\phi = 0^{\circ}$ or hydrostatic pressure is platted in the dotted line.

For $\phi = 45^{\circ}$ and $\epsilon = 0$, Rankine and Rebhann give the same result when $\alpha = 0$. With $\alpha = 45^{\circ}$, Rankine

ARTH	SURFACE	VERTI	CAL	1 IN 12	JAT I	NIP	AN		A IN IT	5 OF	INC	LINA	TION	OF IN	BAC	K OF	w/	ALL.		HT	THE N	VERT	TCAL	q.	SUR	ACEEARTH
AND	BACK	1. 1		(I IN 12)	161	N 6)	(I IN	4)	(I IN 3	1 (1)	NZ.4)	101	NZI	(IIN)	5) (1	IN IZ	161	NG)	141	NAI	TUN	3)	LINZA	12 10	IL SLU	AND
ANGLES OF	OF	0	00	4 46	°	28	1.14°	ozi	18 20	22	37	26	34	33 4	2-4	1° 46	- 9	28	-14	02	-18°	26-	-22 3	745	OOOF	ANGLES
REPOSE	WALL		- 1	VALUE	S OF	EA	RTH	PRE	SSUR	E COM	ISTA	NTS	(()	AND	ANGL	ES OI	RE	SULT	ANT	WIT	H TH	EHO	RIZON	TAL (8)	, WA	L REPOS
(Φ)	(8)	C	δ	CÓ	1C	8	C	8	C 8	C	δ	C	8	C	5 0	8	C	8	C	8	C	8 1	CS	C	3) 8) (0)
1.701	0 00	8.7		100	1117		133		1.5.3	173		197		243	1 7	7.3	6.1		50		38		3.1	3.54	0°	00 1 701
100 000	29 45	147		17.4	20.5		2.5/		293	339		399		530	12	20	9,9		7.9		61		47	1	· 29°	45
43 00: 1	45 00	25/		293	346		ACG		\$68	545		630		83.7	20	27	172		143		11.3		8,9		45	00 45° 00
14.101	20'40	115	- 14	134/	148		16.6		18.7	R26		231		280	10	0	8.6		7.4		6.3		5.0		O°	00 12 701
20 10	1 29 40	29.3		336	3/3		420		47.3	53/		600		758	26	2	233	-	20.5		17.8		50		29°	45
15701	nº 00	142		169	177		440	-	214	583	-	48.		DEE	126		229		128		17.0		4.3		38	40 33 40
2101	29 45	295	2	3.32	1 979	-	420		473	531		100		305	18	-	223		102		8.9		7.8		0.	00 12 701
1	33 42	345		382	429	1	480		540	610	-	1.87		120	100		2/0		205		118		54	1		45
33 42	45 00	656	1 -1	694	755		815		893	9.87	14	1090		356	1.2	27	611		1.220		64.5		70.4		33	22 220 1:
12701	0°.00	168		10.5	204	miller	225		246	267		292		348	15	5	142		120		115		10.1		40	00 33 40
1	29 45	372	12	413	457		50.5		561	620		698		857		9	300	-	281		254		2.8.2		20	4 101
29 45	45° 00	1000																1		•				-	45	"na 29° AS
2701	0° 00	191		211	228	12	246	-	26.7	291		31.3		363	17.	7	163		151		13.7		23	1	. 0	no 2 TO
1 1	26 34	393		430	468		514	- 4	6.7	425		692		84.9	36	0	331		300	in the second	285		63		26	340
26 34	45 00				-								10		-			1 . 14							45	00 26 34
22 TOI	0 00	22.9		246	264		281		301	325		34.7		401	21	1	203		192	100	17.6	1	166		0°	00 2= TO
	2/ 48	42.9		44E	494		53.6		50.4	632	100	689		029	49	2	320		35.7		339		555		21°	48
21 48	45 00		-				-									-									45	00 21°48
3701	0 00	25.9		274	291		31.0		25	351		375		4.22	24	6	23.1		222		210		29		0°	00 3 TO 1
10. 21	10 20	449		4.76	500		544		87	635		689		9/3	420	3	404		389		37.3	3	61	113.3	18°	26
ATAL	43 00	205		2/0	7.00				1-	1 201					-										45°	00 18° 26
7101	14 02	470		4.9.9	5/3		542		26	321		410		11	29	9	28.3		272		26.3	-	56		0°	00 4 701
	20 45	41.0		Tas	343		346	-	1.3	(elst		4.5.7		194	44.	6	431		41.9		#1.1	4	0.6		14	02
14° 02'	45° 00	1							1.0	1-1-										-					29	25
6701	0' 00	359		370	303	-	399		16	430		441		sac	124	0	240		220		22/			1	4.5	00 14 0
	9° 28	484		501	51.6		54.1	5	68	598		638		723	47	1	441		450	-	452	- 9	51	0.27	- 0	670
9' 28'	33 42	IBRZ	1	78.0	1695	6	1620	17	25	1722		1980	1 2	est	200	5	Edda		2010		-	- 47	17	2740	150	00 20
EVEL !	0° 00	500 0	° 00	50.2 4 44	50.7	9 28	515 14	· 02 3	2.7 182	542	22 37	559 6	634 0	ial 33.	12 502	-4.46	507 -	9'28	515-1	4 az ,	527-18	326 5	42 -22 37	707 4	500 0	00 LEVEL

Table No. 2.-Constants C from Sliding Prism Theory, Rebhann's Craphics. (Courtesy of Engineering News.)

For the positive back of wall batter $\alpha = 33^{\circ} 42'$ and angle of surcharge $\epsilon = \phi$, Rankine gives what would appear to be excessively high values for C. Rebhann gives a relatively rapid increase from $\phi = O$ (hydrostatic pressure) up to a slope 3 to 1 ($\phi = 18^{\circ} 26'$), and but moderate increase up to 1¹/₄ to 1 ($\phi = 38^{\circ} 40'$). At a slope of 1¹/₄ to 1 there is a break-down and the values of C rapidly decrease. That is from the graphical determination in which friction against the back of the wall is not considered. On the other hand, when friction against the back of the wall is considered and taken at $\phi' = \phi$, the same graphics, see curve "Rebhann $\alpha = 33^{\circ} 42', \ \epsilon = \phi \ (directrix angle = \phi + \phi' = 2\phi)'' \ gives$ values for C that are high beyond any reason. For this particular case we get what may be termed a double breakdown in the sliding prism theory, while as above stated Rankine gives very high values.

gives a much higher value than Rebhann. For negative values of a, Rankine gives rapidly increasing values of C, while they should manifestly be decreasing. Rebhann gives decreasing values with the curve convex downward. Of course a negative back of wall batter angle 45° is outside of any probability, and the values were only calculated to show the character of the curves in reaching that limit. With the angle of repose $\phi = 45^{\circ}$, and a negative back of wall batter of $\alpha = -45^{\circ}$, C must reduce to zero. For $\phi =$ 45° and $\varepsilon=45^\circ,$ Rankine gives excessively high values for a positive. For a negative they run down to a fairly consistent termination. Rebhann gives much lower values with ϵ positive, while for a negative the results coincide with those from Rankine from -14° 02' to -22° 37'. After passing -22° 37' they again diverge, Rankine giving the greater values until the limit of -45° is reached.