Values.

20 10. Ascertain the cost, at \$85.10 per ton of 2000 lbs., of 864 yards of iron piping, 25 inches internal diameter, and half an inch thick, assuming the specific gravity of iron to be 7.77, and a cubic foot of water to weigh $62\frac{1}{2}$ lbs. (r =

SOLUTIONS.

- 1. £8 15s. 7d.
- 2. .03749; .012602

8. '811768; =
$$\frac{8\sqrt[3]{.02} - 28 \times 125\sqrt[3]{02}}{2\sqrt[3]{.02} + \sqrt[3]{.02}} = \frac{3 - 2 \cdot 875}{8} = \cdot 416.$$

- 4. Area of path = 6174 sq. ft.; of rest, 18126. Cost == $\frac{6174}{9} \times \cdot 22\frac{1}{2} + \frac{18126}{9} \times \cdot 17\frac{1}{2} = 154 \cdot 85 + 81 \cdot 7205 = \$186 \cdot 07.$
 - 5. Interest for $2\frac{1}{2}$ years = $$693.88 $640.80\frac{1}{2} = $52.52\frac{1}{2}$.
- ... int. for 1 yr. = \$21.01; ... principal = $698.88 21.01 \times 8 =$ \$525.25.

Also, 21.01 on 525.25 is $\frac{21.01}{525.25}$ on 1, or $\frac{2101}{525.25}$ on 100; i.e., 4%.

- 6. Cost price of mixture must be $\frac{10}{11}$ of $2.80 = $2.54 \frac{6}{11}$. Hence gain on each gallon of the cheap kind was 14 fr cts., and loss on each gallon of the dear kind was 55 f cts. The gain in one case must be counterbalanced by the loss in the other; hence they must be mixed in ratio $\frac{6575}{1476}$ = 9:2.
- 7. Gain on 112 through advance in stock was 54; interest on 112 was 4, making a total profit on 112 of $7\frac{3}{4}$, or 1 on $\frac{112}{74}$, or 310 on $\frac{112}{73}$ × 810, or 810 on \$4480.
 - 8. Let 5 and 8 represent their capitals. Then

 A's stock $\begin{cases}
 5 & \text{for } 6\frac{1}{4} \text{ months} = \frac{82\frac{1}{4}}{4} & \text{for } 1 \text{ month.} \\
 4 & \text{for } 5\frac{1}{4} & \text{"} = 22 & \text{"} & \text{"}
 \end{cases}$

$$B's stock \begin{cases} 8 \text{ for } 7\frac{1}{2} \text{ months} = \frac{54\frac{1}{2}}{60} \text{ for 1 month.} \\ \frac{5\frac{1}{3}}{5} \text{ for } 4\frac{1}{2} \text{ "} = \frac{24}{84} \text{ "} \text{ "} \end{cases}$$

A's gain = $\frac{84}{544 + 84}$ of 8047 = \$1848; $\therefore B$'s = \$1199.

- 9. To gain 10 per cent. per annum the broker's \$375.80 must become, at the end of the 75 days, $875.80 + \frac{75}{36500}$ of 10 of 875.80 = \$883.52. And the present value of this for 185 days at 8 per cent. = $\frac{100}{102\frac{7}{2}}$ of 388.52 = \$372.50 +.
- 10. Value = $\frac{\{(18)^2 (12\frac{1}{2})^2\}^{\frac{5}{2}}}{144} \times 864 \times 3 \times 62\frac{1}{2} \times 7.77 \times \frac{85.10}{2000} = \frac{1}{2}$ \$6147.81.

ALGEBRA.

TIME-TWO HOURS.

Examiner-J. C. GLASHAN.

Values.

- 8 1. Find the value of $8x^5 + 54x^4 + 50x^3 - 19x^2 - 35x - 18$, when x = -17.
 - 2. Demonstrate the identities:
- (a) $(5m^2 + 4mn + n^2)^2 (3m^2 + 4mn + n^2)^2 = 4m^2(2m^2 + 4mn + n^2)^2$ 8
- 8 (b) (a+b+c)(ab+bc+ca)-abc=(a+b)(b+c)(c+a).
- (c) (a-b)(c-d)+(b-c)(a-d)+(c-a)(b-d)=0.
- 8 8. Divide $(m^2+an^2)(x^2+ay^2)-a(nx-my)^2$ by nx+any.

- Values.
 - 4. Prove that if from the square of the sum of two numbers there be taken four times their product, the remainder is a square.
 - 5. Solvo
 - 8
 - (a) (x-1)(x-2)-(x-3)(x-4)=8. (b) $\frac{2}{x-1} + \frac{8}{x-2} = \frac{8}{x^2-3x+2}$. (c) (x-a)(b-c)+(x-b)(c-a)+(x-c)(a-b) = x-a
 - 10 6. What value of x will make $x^2 + 2ax + b^2$ the square of x+c? What is the result when a=b=c?
 - 7. A man is thrice as old as his son, five years ago he 10 was four times as old; how old is he?

SOLUTIONS.

- 1. Dividing by x + 17, we see the expression equals (x + 17) $(8x^4 + 3x^3 - x^2 - 2x - 1) - 1$, and when x = -17, the first factor equals zero, and expression becomes -.1.
- 2. (a) = $\left\{ m^2 + (2m+n)^2 \right\}^2 \left\{ -m^2 + (2m+n)^2 \right\}^2 = 4m^2$ $(2m + n)^2.$
- 'b) If -b be written for a in the left hand side, it vanishes, so that a + b is a factor of that side; and then by symmetry b + cand c + a must also be factors. This side being of three dimensions must therefore equal K(a + b) (b + c) (c + a), where K is some quantity independent of a, b and c. To find it let a = b = c = 1; K = 1, and identity is established.
- (c) Putting a = 0 in the left hand side, it vanishes. And from the symmetrical way in which a, b and c are involved, it would therefore vanish for b = 0 and c = 0. Hence abc would appear to be a factor; but this is impossible since the expression is of only two dimensions. It must therefore vanish for all values of the letters involved, i.c., it is identically equal to zero.
- 8. Dividend = $m^2 x^2 + a (n^2 x^2 + m^2 y^2) + a^2 n^2 y^2 a (n^2 x^2 + m^2 y^2)$ m^2y^2) + 2amnxy = $(mx + any)^2$; ... quotient = mx + any.
- 4. Let a, b be the numbers. Then $(a+b)^2 4ab = (a-b)^2$, a
- 5. (a), 31. (b), 3. (c). The left hand member of the equation is evidently identically equal to zero, being in fact the same as (c) in question 2, with x for d. Hence equation becomes $\theta = x - a - a$ b-c, or x=a+b+c.
- 6. $x^2 + 2ax + b^2 = x^2 + 2cx + c^2$, or $x = \frac{b^2 c^2}{2(c a)}$. If a = b

=c, x assumes the indeterminate form $\stackrel{0}{0}$, i. c., x may have any value, the two expressions $x^2 + 2ax + b^2$, $x^2 + 2cx + c^2$ being identical, and therefore equal for all values of x.

7. If x be present age of father, equation is $x - 5 = 4(\frac{x}{3} - 5)$; $\therefore x = 45.$

EUCLID.

TIME-TWO HOURS.

Examiner-John J. Tilley.

- N.B.—Eight questions to count a full paper; value, 12} for each.
- (a) Define Scalene Triangle, Point, Straight Line, Square, and distinguish between Problem and Theorem, Direct and Indirect demonstrations.
 - (b) What propositions in Euclid, Book I, are proved by the latter method?
- 2. If one side of a triangle he produced the exterior angle is greater than either of the interior opposite angles. Give full proof for one exterior angle.