expensive. Wilde's machine, driven by a fifteen horse power -the armature making from 1600 to 2000 revolutions a minute, a rapility that gives rise to several inconveniuncesa hieved a great feat when it fused a platinum bar 2 ft . Jong and $a^{5} \mathrm{in}$. in diancte:. We have seen the Gramme machine which we have been describing, driven by a three-horse power, the coils rotating at the rate of 350 revolutions por minute, fuse almost instantancously an 18 gauge platinum wire 8 ft. long A copper wire, 22 ft . long and of 96 per cent. conductivity, luing stretched between the terminals was fused in less than two seconds. A piece of a ro..md file $\frac{1}{2} \mathrm{in}$. in dameter and 4 in . long was burnt away in five minutes, and a piece of diamond was volatilised in less than as many seconds. These facts speak moro eloquently than all the words we could string together in eluciration of the vast heatmg eneryy of this machine.

But however valuable the apparatus may be by its illuminating power, it is still more so in its applications to clectrochemistry. In this branch, it will no doubt be productive of very great results The high cost of other like machines precludes the possibility of using them with advantage. There is here an extenfivo and commercially important department, and we are glad to say that it is in the hands of so able a chemist as Mr. Werdermann. We are informed that Mr. Werdermann is devoting muchattention to this subject, and he is already cheered in his researches by satisfactory resulte and equally encouraging anticipations. Hoexpects to produce chemically pure copper at the prico of the ordinary commercinl ; aluminium for about balf, potassium and sodium for less than half their current prices; and other metale, such as calcium aud magnesium at rates which may bring them into the chemistry of commerce. Ho expects to purify 2 tons of jug iron 20 matutes at a saving of two-thirds the fucl. We shall not even be surprised to see Mr. Werdermann unlocking further secrets of nature, and adding a fi w more names to our list of metals.

We have already stated that Mr. Werdermann has introduced hais invention into England. Though the patent was taken out some three years ago, it was only last November that this gentlemen found in Mesers. Whieldon and Cooke a tirm able and willing to make the machine We can scarcely blame people for being slow to beliove starting noveltice, as we are all more or less conserfatwe, and often yicld only to ocular conviction. Mr. Conrad W. Cooke, who unites the qualities of electricisn to those of mechanical eng'neer, is well fitted for tho undertaking. He has now in course of construction two of these machines of very large dimensions. In them several valuable improvezents are introduced.
The simplicity of the principle embodied in this magnetoelectric machinr, as well na the marvellous effects obtained from it, lead us to think that it is destired to play ammportant lart in the development of the various branches of clectrochemistry and metallurgy generally. On the other hand, it is a struting example of the transformation of mechanical into electrical energy. In tho steam engino that drives the coils, we sco heat developecin into a gigantic motive power, whilst in the machine itself wo see this motion iustantly converted into a continuous stream of electricity. We are gradually finding our way to a compreheasive and complete dynamic theory, and it is plcasing to notico that the great tendency of modern science is to establish the general conclation and unity of physical forces.

THE "IEVEY ENGINE."
(See page 68.)
This invention ras noticed in our list of Patents in tho first number of this work, but the advantages of the improvements pintented are of such importance to ill who use steam power that we think it worthy of a much wider and fuller publicity.

A glance at the tiro girders, or bed plates, shown above will convery an idea of one very great advantage the "Levey Eagine " possesses over those of ordinary construction. The lines a, a, a, a, may bo considered to represent the centre lines of the two piston rods, and cousequent'y the lines of strain, in tro Eugines, and the lines b, b, b, b, to represent the lines of resistance in the samo engines. Girder A represents
an ongine of tho ordinary construction, and girder B a "Lovey Engine." In $A i^{+}$will be observed that the strain is acting between two levere, the length of which is dutermiunble by the distance from the top of engine bed to the centre of the cylinder at one end, and from the top of the bed to the centre of the shaft at the other. Whilo in 13 the line of strain is in the same place as the top of the bed which is also the centre line of the Engine.

The frame of the engine is enlarged at C to facilitate the removal of the cylinder cover or the packing of the gland. The cylinder is mode in sections divided in tho direction of its length or entire, and fitted with slide or rocking valves at the option of the purchaser.

In either case the face of the bed is the centre line and the parts are so arranged that it is impossible to put the engine out of linu.

There are some other very important improvensents in the engine which we have not space to notice.

Chas. Levey s Co., of Toronto, are the Fatentecs and manufacturers.

HUN'TEI'S COMBINATION RAIL.

(Sce page 68.)

Our last issue contained a notice of the above recent inven. tion. We are able, howover, in the present issue to deacribe it more thoroughly with the aid of the accompanying illustration. The rail is a combination of iron or steel, and wood As shewn in the illustration, tho stedl and iron portion is held throughout on wood, and kept in position by means of bolts passing through the wed, the wooden rail and the chairs, which secure the latter to the ties; the web fitting the groove of the wooden portion, and the jasss rolled on the head of the iron rail securing its lateral position perfectly. The chairs or fastenings may be spiked or bolted to the ties as desirable.

The rail is rolled in the shape of an old-fashioned (or English) letter \boldsymbol{T} with the "foot" taken off. The web is calculatcd to give the rail the proper vertical rigidity, it being almost impossible to curve or bend it upwards, upon the same prizeciple that it is exceedingly difficult to bend even a very hight voard cdgewise,--i. e. in a direction parallel to its plane. The bolt-holes through the web are slotted so as to allow for contraction and expansion. The face of the rail from its peculiar form (fod shown by the cut), for the samo reasons which cunble it to resist a vertical strain, preserves adequate strength against any lateral strains to which it may be sulbjected.

The economy resulting from the use of this rail is bolieved to be demonstrable. The saving in metal where a $56-1 \mathrm{lb}$ rail is ordinarily used, is fully four-sevenths. At the same thme the metal being supported entirely throughout on an clastic rail or cushion of wood, resting on wooden ties, a road perfectly easy and free from jar and vibration is obtained, the bearing capacity of which is fully equal to that of the heavier irou rail. Another advantage gained in the combined form of this rail is its perfect continuity; the iron and wood breaking joints alsernately, and consequently another important feature is its perfect immunity from fracture by frost, which is now the cause of so many frightful disasters ; for even if the rail should break (which seems hardly probable), there would be strength enough in the stringer to maintain a passing train of cars in place. And again, the combined rail being bolted through and through the chairs, prevents their sliding or "creeping" down grado, and thus throwing the road out of line and gauge.

In the number of ties to be employed at least 25 per cent. is eaved, computing in the same zatio the expense of the stringers to bo used. Tho cutting of the slot in these is a quick and cheap process, and may be cffected cither at the mills where they are manufactured, or in the woods, or even by very simple machinery carried along the grade as they are laid. It is apparent at a ginnce that all the material being so light it is far casier to handle than the old patterns, and heree tbat this kind of track may be laid more rapidly, especially when it is remembered that no such nico adjustment of chairs or fish-plates, with a multiplication of nuts, washers, "stops," etc., is required as in the old system.

One mimirable feature of the invention is tho ease with which a rail may bo roversed after the "flango side" hus be-

