to designers. The lettered dimensions given on Diagrams 6 and 7 are self-explanatory. The general problem is divided into two cases: Case I, symmetric reinforcement with no tension, Diagram-6; Case 2, symmetric reinforcement with tension, Diagrams 7 and 8 . In each case the thickness of insulation is taken as $d_{1}=D /$ ro, making $a=0.4 \mathrm{D}$. This will usually give good values, even for very large values of D. The reason for adopting this fixed relation is to simplify the formulae which could not otherwise be solved by curves owing to the extra variable d_{1}.

The curves cover any case of eccentrically applied loading, as for columns, piers or arch sections where $N=$ the resultant thrust normal to the section and $v=$ the eccentricity of this thrust.

Diagram 6 gives everything required for designing a section or for finding the stresses in a given design.

Diagram 7 gives all information for designing a section, while the additional diagram 8 is added to find the stresses in a given design.

ALLOWABLE UNIT STRESSES AND BEAM FORMULAE.

TABLE II.
PHYSICAL CONSTANTS, CLASS A CONCRETE

	E		Ult. comp.	Working stresses, lbs. per sq. in.					
Concrete.	sq. in. (6 months).		$12^{\prime \prime}$ Cubes (6 months)	Compression.	Columns.	Tension.	Shear.	Bond.	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}$
I: $1.5: 3$	$3,500,000$	$0.000,0050$	3,400	650	550	0	45	Smooth rod, 60 lb ., develop-	I 5
I: $2: 4$	$3,000,000$	$0.000,0055$	3,200	600	500	0	40	ed in 65 diam.	for average
1:2.5:5	2,500,000	$0.000,0060$	3,000	550	450	0	35	bars, 150 lb ,	working
$1: 3: 6$	2,000,000	$0.000,0065$	2,800	500	400	0	30	developed in 25 diam.	
Steel	30,000,000	$0.000,0067$	65,000	15,000	10,000	15,000	10,000	for \cup bars.	conditions,

Weight of plain concrete $=144 \mathrm{lbs}$. per $\mathrm{cu} . \mathrm{ft} . \quad \mathrm{I} \%$ reinforcement $=\mathrm{I}_{3} 2 \mathrm{lbs}$. per $\mathrm{cu} . \mathrm{yd} .=4.9 \mathrm{lbs}$. per $\mathrm{cu} . \mathrm{ft}$.

Rectangular Beams in Simple Flexure, Neglecting Tension in the Concrete.

Moment of resistance of the concrete

$$
=M_{0}=\frac{1}{2} f_{0} k j b d^{2}=C j d=R_{0} b d^{2}
$$

Moment of resistance of the steel

$$
=M_{\mathrm{s}}=f_{\mathrm{s}} p j b d^{2}=T j d=R_{\mathrm{s}} b d^{2} .
$$

The smaller value of M or R governs the strength of the beam Steel ratio:
$p=\frac{A_{\mathrm{s}}}{b d} ; k=\sqrt{2 p n+(p n)^{2}}-p n ;$ and $j=1-\frac{k}{3}$.
Also, $A_{\mathrm{s}}=p b d ; f_{\mathrm{c}}=\frac{2 M}{k j b d^{2}}=\frac{2^{\prime} R_{\mathrm{c}}}{k j}$; and $f_{\mathrm{s}}=\frac{M}{p j b d^{2}}=\frac{M}{j d A_{\mathrm{s}}}=\frac{R_{\mathrm{s}}}{p j^{\prime}}$ where $M=$ moment of the external forces.

When $M_{\mathrm{o}}=M_{\mathrm{s}}$, then $R_{\mathrm{c}}=R_{\mathrm{s}}$ and $p=\frac{\mathrm{I}}{\frac{2 f_{\mathrm{s}}}{f_{\mathrm{c}}}\left(\frac{f_{\mathrm{s}}}{n f_{\mathrm{c}}}+\mathrm{I}\right)}$
Insulation $d_{1}=\frac{1}{2} \sqrt{D}$ about, and $D=d+d_{1} . \quad$ Min $d_{1}=\frac{9}{4}^{n}$
TABLE III.
WORKING VALUES FOR CLASS A CONCRETE.

Mixture Concrete.	$\frac{f_{\mathrm{s}}}{f_{\mathrm{c}}}$	$\begin{gathered} \quad \begin{array}{c} p \\ \text { for } n=15 \\ M_{\mathrm{s}}=M_{\mathrm{c}} \end{array} \end{gathered}$	Steel per $\mathrm{cu} . \mathrm{ft}$.	j	k	$\begin{gathered} R_{\mathrm{c}}= \\ 1 / 8 f_{\mathrm{c}} k j \end{gathered}$	$\begin{aligned} & R_{\mathrm{s}}= \\ & f_{\mathrm{s}} p j \end{aligned}$	Moments of external loading.		
								Nature of supports.	Uniform load.	Concentr load.
1:1.5:3	23.1	0.0085	4.I7 lis.	0.869	0.393	110.9	I 10.9			$M=P l / 4$
1:2:4	25	0.0075	3.68 lb .	0.875	0.375	98.4	984	Simple beam, 2 supports	$M=p l^{2} / 8$	$M=P / 1 / 5$ $M=P l / 5$
1:2.5:5	$27 \cdot 3$	0.0065	3.19 lbs .	0.882	0.355	85.0 74.5	$\begin{aligned} & 86.0 \\ & 74.5 \end{aligned}$	One end continuous Continuous beam	$\begin{aligned} & M=p l^{2} / 10 \\ & M=p l^{2} / 12 \end{aligned}$	$M=P l / 6$
$1: 3: 6$	30	0.0056	2.74 liss.	0.888	0.335	$74 \cdot 5$	745			

