Volume 21.

The heaviest locomotives in actual service on thirty-six American railways are given in Table 2, which table also indicates contemplated increases.

The increases from the 22,000-lb. grasshopper used on the Baltimore & Ohio in 1835 to the articulated type weighing 463,000 lbs. has been rapid and remarkable and is illustrated by the following data, which shows the heaviest engines in actual service on the Baltimore & Ohio Railroad from 1835 to date:

Data Showing Engine Development on Baltimore and Ohio Railroad,

Type.	Date.	Weight.	
Grasshopper	1835	22,000 lbs.	
Winans' Camel, 8-wheel	1851	74,600 "	
Perkins' -10-wheel	1863	90,800 "	
Consolidation	1873		
Consolidation	1881		
Mogul	1886	······ 113,200 "	
Consolidation	1887		
Consolidation	1888		
Baldwin, 10-wheel	1800		
Consolidation	1802		
Consolidation	1804		
Electric Motor	1805		
Consolidation		208,500 "	
Pacific	1006		
Articulated	1911		

The above shows an increase from 133,000 lbs. in 1890 to 463,000 lbs. in 1911, which is about 248 per cent. in the past 21 years. There are much heavier engines in use on other roads.

The maximum axle load in 1835 was 5,500 lbs., while at present it has gone beyond 65,000 lbs., with limit not yet reached.

Type.	Engine Alone.		*Double-Header.		
	Weight, Lbs.	Wheel Base, Ft.	Weight, Lbs.	Wheel Base, Ft.	Weight, Per Ft.
Atlantic Prairie Consolidation Decapod Pacific Mikado 12 Wheel Articulated 10 Coupled 20 Wheel Articulated	$\begin{array}{c} 214,800\\ 244,700\\ 260,100\\ 262,000\\ 267,000\\ 270,000\\ 305,000\\ 334,500\\ 361,000\\ 478,000\\ 478,000\\ \end{array}$	30.79 34.25 26.50 27.08 29.83 35.20 35.20 35.00 30.66 43.50 59.80	728,400 807,500 860,400 817,400 802,000 865,400 960,000 473,800 1,074,000 703,600	127,76 132,92 133,81 130,15 127,00 142,48 150,00 64,56 461,00 99,70 99,70	5,700 6,070 6,520 6,280 6,320 6,070 6,400 7,340 6,670 7,060
16 Wheel Articulated. 24 Wheel Articulated. 12 Wheel Electric 16 Wheel Electric 16 Wheel Electric 17 Cooper's E-50 16 Cooper's E-60	493,000 616,000 300,400 320,000 225,000 270,000	$\begin{array}{r} 40.17\\ 65.92\\ 38.50\\ 44.22\\ -23.00\\ \cdot 23.00\end{array}$	588,000 841,600 609,800 640,000 710,000 852,000	82.58 105.82 86.50 102.84 104.00 104.00	7,130 7,950 6,950 6,220 6,830 8,190

Table 1-Heaviest Locomotives of Each Type.

*Weight and wheel base for articulated engines are given for one engine and tender.

+Cooper's E-50 and E-60 typical consolidation engines are given for comparison.

Bridge Specification Requirements.

The specification loading for bridge design as now in use by the various railroads is given in Table 3, which table also gives the impact allowances and permissible unitstresses. The simplest manner of comparing these various specified loadings, including their different impacts and unitstresses, is by reducing them to an equivalent loading on the basis of the American Railway Engineering Association Specifications. These specifications provide for a consolidation type of engine known as Cooper's E-40, E-50, E-60 series, depending upon whether the weight on each driving axle is forty, fif y or sixty thousand pounds. The equivalent loading given in the sixth column of Table 3, therefore, means that the specified loading, impacts and unit stresses, as adopted by the various railways, are practically equivalent in their effects on bridges to the Cooper's E series loading noted, when used in connection with the American Railway Engineering Association Specifications.

This table also shows changes under consideration by a number of railways. It will be observed by reference to the table, column 6, that eleven roads are building bridges for a strength practically equal to E-60 bridges, four for E-57, seven for E-55, one for E-53, eleven for E-50, four for loads

Table	2-Heaviest	Locomoti	ves in	Actual	Service	on	36
		American	Railw	ays.			

	Locomotives in i	Service.	Under Consideration.		
Rallway.	Туре.	Weight Lbs.	Type.	Weight, Lbs.	
N.Y.NH&H	Pacific	229,500	Pacific	285.000	
B. & M	Pacific	equal	·····		
N V C Lines	Pacific	266,100			
Erie	Consolidation	260,100	Mikado	305.000	
P. R. R.	Pacific	269.800	ALL MARKEN OF		
L. V	Pacific	241.400			
P. & R	Consolidation	222,000			
B. & O	Mallet	463,000			
N. & W	Mallet	400,000			
C. & O	Mallet	392,000	Mallet	-1.100,000	
Virginian	Mallet	455,000			
S. A. L	Consolidation	212,000		1	
Southern	Mallet	366,000	****.***		
A. C. L	Consolidation	171,000			
1. & N	Consolidation	224,000			
Wabash	Consolidation	223,800			
B. & L. E	Consolidation	254,000	*******	1111111	
I. C	Consolidation	223,000	Mikado	280,000	
M Ct Doul & C C M	Decide	217,000			
M., St. Faul & S. S. M	Mollet	203,800	,		
C & N W	Paoific	343,400			
Great Northern	Consolidation	216 600			
C M & St P	Mikado	260 500			
C. B & O	Mallet	254 500	Mallot	000 291	
AT&SF	Double Santa Fe	616,000	MIGHICL	100,000	
C. R. I. & P	Consolidation	238,900			
N. P.	Mallet	435,200			
M. P	Pacific	251.000	Mallet	?	
S. P	Mallet	437.000			
St. L. & S. F	Mallet	416,000			
M., K. & T	Pacific	228,000			
Grand Trunk	Consolidation	211,200	Mikado	275,000 abt.	
Canadian Pacific	Mallet	261,900			
C. N	Consolidation	181,400	Consol	?	
N. Rys. of M	Mallet	338,000		Linden	

under E-50 and one for loads over E-60. Of those roads which are now designing bridges for E-50 or under, two propose the change to E-60 and three to loading in excess of E-50 in the near future.

It may be reasonably assumed that the specifications in fo ce, or the proposed changes, represent the views of the engineering department of the various railways relative to the sufficiency of the present requirements for meeting future conditions, and on this assumption:

> One road considers E-65 insufficient, Thirteen roads consider E-60 sufficient, Fifteen roads consider E-55 sufficient, Ten roads consider E-50 sufficient.

In order to determine the relative effects, on bridges, of the various heaviest types of engines in service and the usual specification E-50 and E-60 class, the maximum shearing and bending stresses produced by each type were calculated for spans ranging from 10 ft. to 100 ft., all locomotives, excepting the articulated types, being considered as running double-headers drawing a train of 5,000 lbs. per foot of track. On the assumption that the maximum stress produccd by E-50 class is represented by unity, the proportional maximum stress produced by the various locomotives on bridges under 100 ft. is given in Table 4.

It is fortunate for our bridges that the stresses produced by the heaviest engines are not in direct proportion to the weight as compared with E-50 type. For instance, the 24wheel articulated engine weighs 174 per cent. more than E-50, but produces increased stresses varying from 15 per cent. to 33 per cent. The 16-wheel articulated type weighs 119 per cent. more, but produces increased stresses varying from 26 per cent. to 34 per cent. The 20-wheel articulated type weighs 112 per cent. more, while the stresses are increased