pressure only is to be borne. Fig. 233 shows a frumngy.jotnt used in the construction of a principal rafter. Sul hoints are made on the principlo of a tenon and morttse, in which one of the pieces to ve joined is cut away 80 to leave a small projection or tenon, while a corresponding cavity or mortise is made in the other piece to receive the tenon.

There are many other particulars which omight be given respecting flooss and partitions, \&c.; but enough has been said to show the nature of the house-carpenter's work. 'The various tools used by him are represented in the tigures, not very accurately indeed, but they are all so well known that the defects of the fignres may be supplied by the experience of the reader. In carpenters' work the timber remains rough, as left by the saw; but in joiners', it is brought to a smooth surface by means of the plane, wherever it is exposed to view. The chief cutting tools used by the joiner consist of saws, planes, and chisels. There are various kinds of saws, distioguished by their shape and the size of the teeth: thus the rupper bas 8 tecth in a length of 3 inches; the half-rirper 3 teeth to the inch, the hand saw (liz. 239) 15 teeth in 4 inches, and the purnel saw 6 teeth to the inch. The tron baw (fig. 218), which is used for cutting tenens, has about 8 tecth to the inch, and the blade is prevented from huckleny or bending br means of a thich piece of iron at the bacl:. i'he su*h saw has a brass back, and $1: 3$ teeth to the inch, while the dote-tail saw has 15 . The key-hole saw (tig. 200) is used for cutting out small holes. There are also various kinds of planes; those used for bringing the stuff to a plane surfice are called tench planes, and of the-e the auck plane is used on the roughest wonk, while the Iryn! plane (ig. 223) is used after the jack planc for tryung up, or taking off shavings of the whole length of the stuff. There is also the lony plane, 2 feet 3 inches in length, the fouter, 2 feet 6 inches in length, and the smoctheng plane, 7d inches in length, used for cleaning of finished sook There are also various mouldeng planes for forming or stecking mouldings, as it is called. Chisels (figs. 215,229 ) are also of various forms and uses, such as the puriny chasel, which is uecd by the pressure of the band only; the rocket-chisel, used with the millet (fig. 211). The gruitr (fig. 22i) is only a curved chisel The boring tools are the hradarl (fig. 214), the armlet (fig. 216), the leare and but (fig. 236), the latter admitting into the handle or stork a variety of strel bits of different bores and shapes for boring and widening holes in wood and metal. The joiner also uses the sereirinter (fig. 220), the pincere (fig. 228), the hammer (fig. 208), the are (fig. 219), and the ad-e (fig. 225). It may be remarked that the plut-jot (ing. 238) is not used by the house-carpenter or joiner, but belongs rather to the cabinct-maker.

## HAWES STEAM TRAP.

W. give on page 220, from Enytrer anı, views of an ingenious arrangement of steam trapdesigned and patented by Mr. Loring P. Hawte, of New York. The apparatus consists of an outer shell formed of two picces, which are held together by suitable ecrews, which can le removed to repair or clean the inside of trap. $B$ is an expansive vessel made of thin sheet metal, and supported in its position by the outer shell $A, A$, and adjusted by the stem $C$ and wheel $H$. This vessel contans alcohol or other eitsily raporised liquid combinced with or standing on any thick or gummy substance Jike resin, this gum filling the vessel above the central joint and thus preventing say waste of alcoliol at this joint. When the stum strikes the vessel the expansion of the liquid or the formation of vapour is sufficient to press out or expand its clastic top and bottom and stop the flow of steam by bringing one of its Rat sades against the opening $G$ from which the steam escaf.cn.

When the accumulation of water of condensation allows the parts to cool sufficiently for the veesel B to collapse or lessen in thickness by the diminished pressure withat it, the top of the expansive vessel which has formed the ralve is drawn away from the steam inlet and the water is allowed to run out ontil the heat is sufficient to again expand or boil the alcohol, and produce a pressure in the vicssel $B$, which agnin rprings out its top or sides and then closes the openiug as before. is a cylindrical block of wond which is secured in its place by wires 0,0 , which are soldered to the sldes of the expansive resiel, this block is of rufficient length to prevent the sides of the : xpansive vessel from being injured by collapsing by' the external pressure, or from tho face of the regulating stem

C being serewed down upon it. E is the outlet pipe ; F is the inlet pipe, $G$ is the inlet valve or opening, and is composed of soft metal, being secured in its place by the concentric ring $b, b$. If is a hand wheel for turning the spindle or stem $C$; 1 is a stuffing nut; $K, K$, shows the top of the gum; and L , $\mathrm{L}_{\mathrm{L}}$, the top of the alcohol.

This trap is very compact and simple, and by a proper atdustment of the screw epindle $C$, water of any temperature from 100 deg. Fahr. to 212 F'alir. may be retained or discharged as desired, a certain temperature produces a certain pressure in vessel B , to which is due a corresponding expansion of said vessel ; so if the screw spindle is so adjusted that it requires 200 degg. Fabr. to close the valve, the trap will continue to discharge water as fast as it accumulates at that temperature; if the water becomes botter the valve closes, while if it cools the valve opens. The advantiges of this ieature are olvious. This trap will operate equally well either side up.

## THE LATHE.

In the opening lecture, given before the Janchester Society for the promotion of Scientific Industry, Dr Anderson, discoursing of Tools, said :-1'o select for an example the familiar tool called a lathe, - it is chicfly intended to impart to materials true direles, strueht liues and flat surfices, and all of these conditions must first exist in the tool. The bearing surface of the spindle neck must itself be absolutely round in the strictest sense, otherwise the article operated upon will not derive a true circle from the revolution of the spindle. The mathematically true circle here referred to is practically very difficult to attain. There are many tools in the world that are supposed to be round, but which are not so m reality in examination of the Whitworth gauges will best convey the ides of what is meant by mechancal truth and a true circle, cach part fitiog accurately into the other, yet perfectly free in every position. Then again the lathe has to afford absolutely straight lines of morement for the guidance of the cutting instruments, whereby the true circle derived from the spindle and deadcentre point is developed into a true aylinder, hut not so unless the parent cirele and straight lines are correct in themselves If a perfectly flat surface is recpuired foom the lathe, the cutting instrmment must pass in a straight line transversely to tho axis of the revolving spindle, and if the two are set absolutely at right angles to each other, a correctly flat surface is the result. If, however, any of the conditions of accuracy are wanting, then imperfection in the produce will follow, as a matter of course. If the lathe is intended to allord ecrews, it must first have a perfect seres within itself to copy from, for if there is any imperfection in the serew copy, or in the divisions of the teeth of the wheels by which it receives collateral motion, the screw produced will contain at transferred copy of cach imuerfection. It will thus beseen that the lathe is simply a tool to transfer its own character to other things; hence the paramount importance of having the lathe perfect in itself. But unfortunately, the world, as a rule, does not -ufficiontly appreciate the difference between perfect tools and tools nearly perfect, but in the government of thes portion of the world it is so arranged that thuse who do not are invariably punikined, berause the want of truth and accuracy eatails greater cost in their production, both at the pr-sent time and hereafter.

Mr. John Adams, of Canboro, informe the Monck Reforat J'ross that he has a receipt tor kecpung the potat's bugs from doing damage, and says that sance using it not a bug has been seen in his potato patch. He took about four pounds of coal tar and boiled it in three or four gallons of water, afterwards sprinkling the solution on the vines with a brush. The four pounds suffice for one acre, and the effect was all that could be desired.

The Ottama Terars says:-" We are glad to learn that the miscellancous writings of the late Charles Daveon Shanly are about to be collected for publication it one or more volumes, accompanied ly a suitable memoir, written by his brollser, Jir. Walter Shanly, C. E, who has undertaken the cditorship. We feel quite sure that this collection, forming as it will a most desirable memont, of one long connected with the nublic service of Canada, as well as with its nascent literature, will be gladly welcomed throughout our country:"

