EXECUTIVE SUMMARY

We are certain of the following:

- there is a natural greenhouse effect which already keeps the Earth warmer than it would otherwise be.
- emissions resulting from human activities
 are substantially increasing the atmospheric
 concentrations of the greenhouse gases:
 carbon dioxide, methane,
 chlorofluorocarbons (CFCs) and nitrous
 oxide. These increases will enhance the
 greenhouse effect, resulting on average in
 an additional warming of the Earth's
 surface. The main greenhouse gas, water
 vapour, will increase in response to global
 warming and further enhance it.

We calculate with confidence that:

- some gases are potentially more effective than others at changing climate, and their relative effectiveness can be estimated. Carbon dioxide has been responsible for over half the enhanced greenhouse effect in the past, and is likely to remain so in the future.
- atmospheric concentrations of the longlived gases (carbon dioxide, nitrous oxide and the CFCs) adjust only slowly to changes in emissions. Continued emissions of these gases at present rates would commit us to increased concentrations for centuries ahead. The longer emissions continue to increase at present day rates, the greater reductions would have to be for concentrations to stabilise at a given level.
- the long-lived gases would require immediate reductions in emissions from human activities of over 60% to stabilise their concentrations at today's levels; methane would require a 15-20% reduction.

Based on current model results, we predict:

- under the IPCC Business-as-Usual (Scenario A) emissions of greenhouse gases, a rate of increase of global mean temperature during the next century of about 0.3°C per decade (with an uncertainty range of 0.2°C to 0.5°C per decade); this is greater than that seen over the past 10,000 years. This will result in a likely increase in global mean temperature of about 1°C above the present value by 2025 and 3°C before the end of the next century. The rise will not be steady because of the influence of other factors.
- under the other IPCC emission scenarios which assume progressively increasing levels of controls, rates of increase in global mean temperature of about 0.2°C per decade (Scenario B), just above 0.1°C per decade (Scenario C) and about 0.1°C per decade (Scenario D).
- that land surfaces warm more rapidly than the ocean, and high northern latitudes warm more than the global mean in winter.
- regional climate changes different from the global mean, although our confidence in the prediction of the detail of regional changes is low. For example, temperature increases in Southern Europe and central North America are predicted to be higher than the global mean, accompanied on average by reduced summer precipitation and soil moisture. There are less consistent predictions for the tropics and the southern hemisphere.
- under the IPCC Business as Usual emissions scenario, an average rate of global mean sea level rise of about 6cm per decade over the next century (with an uncertainty range of 3 10cm per decade), mainly due to thermal expansion of the oceans and the melting of some land ice. The predicted rise is about 20cm in global mean sea level by 2030, and 65cm by the end of the next century. There will be significant regional variations.