taught.

(h). "He fought a battle." Battle is the cognate object of the verb *fought*.

(i). "He ran a mile." Mile is the adverbial object of distance.

(j). "It measures a mile." Mile is the adverbial object of degree.

V. Point out the ambiguity in the following sentence:—

(a). "He measures six feet," may mean, (1) when measures is passive; he is six feet high, or (2) measures may attribute to him the action of measuring six feet.

(b), "He thinks he is beaten," may mean (1.) He thinks he is overcome, or (2.) He thinks a beating is being inflicted on him, or (3.) He thinks he (another) is beaten, or (4.) He thinks he (himself) is beaten.

(c). "The Duke yet lives that Henry shall depose," means either. "The

boys is the indirect object of the verb | Duke that shall depose Henry yet lives, or, "The Duke that Henry shall depose yet lives." This sentence was purposely made ambiguous by Shakespeare. It is a good instance of the value of the rules of collocation.

(d). "Just at this moment I met a man who seemed a suspicious sort of fellow and turned down a lane," contains ambiguity as to what pronoun should be understood as subject to the last proposition, (he, or, I) "turned down a lane." There is also a double meaning in suspicious, active and passive, though the passive is the probable meaning intended.

(e). "I am not bound to receive any messenger you may send " contains an ambiguous use of any, and may mean "I am not bound to receive whatever messenger you may send," or "I am not bound to receive a messenger you may send."

MATHEMATICS.

Solution to Problems in the May Number.

35. If
$$ax+by=1$$
 and $cx+dy=1$,
$$c-a$$

$$c-a$$

$$bc-ad$$

$$bc-ad$$

$$bc-ad$$

$$c-ad$$

$$c-$$

 $\therefore (ad+bc)(b-d)(c-a)=(bc-ad)^2$ multiply out and divide thro' by abed, and we obtain

$$\frac{a}{c} + \frac{c}{a} + \frac{b}{d} + \frac{d}{b} = 4.$$

36 Take a line AB to indicate the course, the stream flowing from A to B. If he goes down stream first he will reach B and start back to A before half his time has elapsed. Let C be his position at the end of half the

time, that is, when he changes his rate of moving from 5 to 4½ miles per hour. Let D be a point farther up stream from which he can reach A in the same time that he took to row from A to B. Then, since his rate from A to B is S miles an hour, and from D to A 1½, and since these distances are rowed in the same time, it follows that DA is to AB as 1½ is to 8. Also, since the time of rowing from C to D is equal to the time from B to C, and that the rate from B to C is 2 miles an hour, and from C to D 11/2, therefore BC is $\frac{1}{2}$ of BD, and hence is $\frac{1}{2}\frac{3}{8}$ of AB. If he goes up stream first it may be shown in the same way that he will have gone $\frac{2}{3}\frac{4}{5}$ of the distance from B to A when he reduces his rate of rowing. Now, suppose the length of the