Table 2	Assumptions:
Base Case Assumptions	1. Coverage area = 5 965 044 km²
and Calculations	2. Frequency of coverage = Once every three months *
	3. Aircraft and coverage = 3 000 km in 9.3 hrs at 7 620 m (25 000 ft.)*
	4. Sensor coverage (Radar) = 25 km swath at 7 620 m *
	Calculations:
	1. Probability of Detection [p(d)] Aircraft coverage per sortie *
	at 7 620 m = 3 000 km × 25 km = 75 000 km ² $p(o) = \frac{S}{m} = \frac{75000}{5965044} = .012$
	Therefore, $p(d) = p(o) \times p(i) = .012 \times p(i)$ for $p(i) = (.05 \rightarrow 1.0)$ in .05 increments
	2. Number of "Looks" [L] Number of sorties required = 5 965 044 75 000
	= 79.53 per quarter = 318.12 per year
	"Look" rate = <u>318.12</u> = .87 per day 365
	Interval length = 5 days Number of "looks" = t × r = 5 days × .87 per day = 4.35 ≈ 4 "looks"
	<i>* Source:</i> Airborne Remote Sensing, <i>pp.17-19.</i>

identification represents the likelihood that the monitoring system recognizes a treaty violation given that the target lies within the swath of the airborne sensor. For example, p(i) = .05 denotes a 5 per cent chance that the target will be identified assuming the sensor platform has passed in its vicinity; alternatively, p(i) = 1.0 indicates that the system always identifies the target if it has been observed. As the probability of identification increases, that is, as the ability of the monitoring system to recognize a treaty violation improves, the probability of detecting a