§5. If an algebrical expression r_1 , arranged as in (1), be zero, while the coefficients g_1 , k_1 , etc., are not all zero, an equation

$$\omega \int_{1}^{\frac{1}{m}} = l_1 \tag{2}$$

are dis-

must subsist ; where ω is an m^{th} root of unity ; and l_1 is an expression involving only such surds exclusive of $\Delta_{1}^{\frac{1}{m}}$ as occur in r_1 . For, let the first of the coefficients h_1 , e_1 , etc., proceeding in the order of the descending powers of $\Delta_{1}^{\frac{1}{m}}$, that is not zero, be n_1 , the coefficient of

 $\int_{1}^{\frac{n}{m}}$. Then we may put

$$mr_1 = n_1 \{ f(J_1^{\frac{1}{m}}) \} = n_1 J_1^{\frac{s}{m}} + \text{ etc.} = 0.$$

Because $\Delta_1^{\frac{1}{m}}$ is a root of each of the equations f(x) = 0 and $x^m - \Delta_1 = 0, f(x)$ and $x^m - \Delta_1$ have a common measure. Let their H. C. M., involving only such surds as occur in f(x) and $x^m - \Delta_1$, be $\varphi(x)$. Then, because $\varphi(x)$ is a measure of $x^m - \Delta_1$, the roots of the equation

$$\varphi(x) = x^{c} + p_{1}x^{c-1} + p_{2}x^{c-2} + \text{etc.} = 0$$

are $J_{1}^{\frac{1}{m}}, \omega_{1}J_{1}^{\frac{1}{m}}, \omega_{2}J_{1}^{\frac{1}{m}}, \dots, \omega_{c-1}J_{1}^{\frac{1}{m}}$; where ω_{1}, ω_{2} , etc.,

$$\Delta_1^{\frac{c}{m}}(\omega_1 \ \omega_2 \dots) \ (-1)^c = p_c$$

Now c is a whole number less than m but not zero; and, by \$1, m is prime. Therefore there are whole numbers n and h such that

$$\int_{1}^{\frac{cn}{m}} (\omega_{1} \ \omega_{2} ...)^{n} \ (-1)^{cn} = \int_{1}^{\frac{1}{m}} \int_{1}^{h} (\omega_{1} \ \omega_{2} ...)^{n} \ (-1)^{cn} = p_{c}^{n}.$$

Therefore, if $(\omega_1 \ \omega_2 \dots)^n = \omega$, and $l_1 \ \varDelta_1^h (-1)^{cn} = p_c^n, \ \omega \ \varDelta_1^m = l_1$.

§6. Let r_i be an algebraical expression in which no root of unity having a rational value occurs in the surd form $1^{\frac{1}{m}}$. Also let there be in r_1 no surd $4^{\frac{1}{m}}$ not a root of unity, such that