The Canadian Engineer

A weekly paper for engineers and engineering-contractors

STRESSES IN CIRCULAR PIPES.

WITH SOME NOTES ON THE DESIGN OF LARGE WATER CONDUITS- A CALCULATION OF STRESSES DUE TO INTERNAL WATER PRESSURE, WEIGHT OF THE SHELL, AND BACK-FILL-CIRCULAR PIPE UNSUITED FOR CASES OF LARGE DIAMETER PIPE AND LOW PRESSURE HEAD, OWING TO THE RESULTING BENDING MOMENTS

By T. H. HOGG, B.A.Sc., A.M. Can. Soc. C.E.,

Assistant Hydraulic Engineer, Hydro-Electric Power Commission of Ontario, Toronto.

The analysis of the stresses in circular pipes due to
intereight of the material in the pipes themselves, to kind and external water pressures, and to different
been of loading, is a subject to which little attention has
devoted in engineering literature.
When the pipes are relatively small in diameter, the
thonditions are such as yield to simple approximate me-
and of investigation. With the larger sizes of conduits
and pipes now being used so extensively in water supply
Weighter power systems, however, the question of the
at the of the shell itself, and the differences in pressure
in the top and bottom of the pipe when conveying water
a horizontal position, become exceedingly important.
This paper is presented in the hope that it will afford
The aid to the engineer in the design of such conduits.
While the of the analyses contained in it were arrived at
Ir. R. writer was working under the direction of lowed in . Johnson, of Niagara Falls. The system fol-
due to wa the development of the theory of the stresses
C. W. Fater pressure is along similar lines to the work of
in circulkins and E. J. Fort, who developed the stresses and dular rings due to the weight of the rings themselves, lished in to external water pressure. Their work is pubEngineers the "Transactions of the Association of Civil The of Cornell University," for 1896.
Stresses in following discussion takes up the analysis of the The meth circular conduits due to internal water pressure. of the method of combining the stresses due to the weight question shell and to the water pressure is reviewed; the of Water is the design of large conduits for the carrying
ogical one, dealt with, and the equilibrium shape as the
a in preference to the circular, is described.
Utresses Due to Internal Water Pressure.-It is Water assumed in figuring the stresses due to internal zontally pressure in circular pipes or conduits, lying horithe tension that it is quite sufficient to take into account only momension induced in the shell, and that the bending
pressure may be neglected. This is only true when the
the pressured is infinite and may be grossly in error when
${ }^{\text {relatively }}$ pressure head is small, and the diameter of the pipe large. When the latter condition exists there
is a greater pressure at the bottom than at the top, and this causes large bending moments in the shell.

Throughout this discussion the ring is assumed supported on a knife edge, and water pressure is assumed level with the crown of the pipe. The analysis also assumes a thin ring of homogeneous material, having a constant modulus of elasticity, and that the changes from

Fig. 1.
a circular form will have little effect upon the dimensions of the ring.

These assumptions are merely to facilitate the application of theory. When the results have been obtained, practical considerations which affect these considerations will be discussed.

