$(.02+.04)=0.06 ; \Delta=48^{2} ; R=\frac{5730}{6}=955$. Substituting in the
equation

$$
\begin{aligned}
& R^{\prime}==790.90-8.46 .69-0.12 \\
& 6.83760-0.89046 \\
&=-46.91 \\
&=-0.05286=887.43 .
\end{aligned}
$$

therefore from Searles' Table VI wo get
$D^{\prime}=6^{\circ} 28^{\prime}=6^{\circ}, 466$.
$\mathrm{L}^{1}=48 \div 6.466=742.35 \mathrm{ft}$.

$$
\mathrm{T}^{\mathrm{l}}=\left(887.43+3.92 \tan \frac{\Delta}{2}=346.85 \mathrm{ft}\right.
$$

which is the datar required. Other probiems might be taken, but we believe enough has been given to show the working of the curve.

Some engineers, it might be remarked, seem to think that using what they call "elaborate trunsition curves" is a waste of time. No reason is offererl, however, to show why it should take more time to do it right thun wrong. At any rate, prevent railroad practice demands the best, and a properly quilifiod engineer is on, a able to reapond to these demands. Surely, if a thing is worth doing at all, it is worth doing well.

In conclusion the writer wishes to extend thanks to Prof. Crandali for his kindness in allowing the use of his notes and tables.

