CANADIAN DRUGGIST.

CANADIAN DRUGEIST.

Subschiption, sl peir ybat is .Invince:. Adertiding kates oll dpulication.

The Canmalian Drugrist is issised on the 15 th of earls month, and all matter for lisertion should reach us by month, and allmatter
All cheques or dratts to lee male payabie to the editor.
New advertisemetits or changes to be medresued
CANADIAN DRUGGIST,
Sthitimos, Ontinho.
ENGIISH OFFICE:
50 Hillside Road, Stamford Hill, LONDON, N.

SPECIAL REMINDERS.

We lasue on the $\mathbf{1 5 t h}$ of each month, therciore, Correspondence should reach us by the 7 th.
New Advortimementa should reach us in the \boldsymbol{i} th.
Changes of Advertisensentm should reach us by 3th

SPONGES.

Aldhough sponges have been in use for so many years, until recently there has been much difference of opinion as to whether they were animal or vegetable in their nature, but, by careful study of fossil organism, great advance has been made in our knowledge of their origin and pheaomena, and zoologists now classify them with the former; although they have little to characterize them as such. Until about. 1876 one of the chirf obstacles to the in. terpretation of fossil sponges arose from a singular mineral replacement which most of them have undergone, leading to the substitute of calcite for the silica of which their skeletons were orginally composed. This clange was demonstrated by Zittel, which was at tirst pronounced inpossible, but since then several palaontologists have worked at the subject and π cata. logue of the sponges preserved in the British Museum has been published.

vatuae and cilakactemetics.

Sponges are divided into a vast mumber of specific forms, some being globular; some cylindrical, conical, cup-shaped, thread-like, dc., but all are attached, likn plants or zoophytes, to rocks, stones or other substances in water. Their activity is most obviously manifested by a rapid overflow of water from the oscule, and a gentle instreaming through the minute
pores, earying wi b it both the air and the organie partieles necessary for the support of life. They consist of a geliathoous substance (Sariode) which, if portions are examined under the microscope, variable processes will be seen in motion, and all, except three or fone genem, possess some kind of skeletal structure, which is often formed of a horny, elastic sub. stance, in tibres, which grow from a broad base, and which, sometimes, enclose spicules or foreign bodies which also contribute to the formation of the skeletom of some silicious sponges, occasionally forming the entiro skeleton: others consist of calcareous spiculec imbedded in the gelatinous mass and exhibiting great vayiety of form and arraugement. The spicules of these sponges consist of carbonate of hme having the crystalline structure and other properties of calcite. They are most beautiful microscopic objects, each spicule, as far as its mineral component is concerned, is a single crystal, all the molecules of calcite of which it is built up, being similacly oriented, and its surface usually has the form of a cone or combination of cones and is always curved.

In a living state many sponges exhibit lively colors, usually from the presence of cells containing granules of pigment, which in some undergo a remarkable change of color when exposed to the air and finally fade away. In many cases they borrow thair color from parasitic algae with which they are infested. Suth cient is known to enable us to make up two chief types of development although the details in this subject are very obscure: One, common anongst the calcareons sponges, is characterized by what is known as the "amphiblastula" stage. the other by the "phanula" stage. The independent development of similar types of canal sys tem in diflerent groups, sometimes within the cimits of a single family, is a remark. able fact, and tellingly illustrates the doctrine of homoplasy, enunciated by Lam kester:

spontif: Fishtelents.

Ditierent methods are employed to get sponges from the bottom of the sea, as. cording to the depth from winich they are to be brought. In comparatively shalInw water they maty be lossened and hooked up by a harpoon, a five-pronged fook, with long wooden handle : at greater depths, down to 30 or 40 fathons, they are dived for ; and at depths of from:0 to 100 fathoms they arre dredged with a net. Orer 6000 men and boys are em-
ployed in the Bahamas, where harpooning is carried on, after the system of the (Grecks, who use a rime plate cylinder, closed at the lower end by a pilate of ghass, through which, when immersied, the bottom of the sea may be elealy seen, even in 3 fathoms.

The work of diving, which is umally carried on in the summer menthes, is very severe on the diser, wher ratars the surface in at swoming state, if he has been working at depths of 30 or to fathoms or more. 'The primitive anethorl of diviby with it shal of stome, to wowe as at sinker, and at cord to communicate with the surface, is still practised in the Mediterancan.
I) redging is chietly catried on atong tho western coast of Asia Minor. The mouth of the dredge is if yards wide and I yard high; the net which is made of camel-hair cords, with meshes 4 inches square, is drawn along the bottom by a tow linc, attached to the bowsprit of a sailing ves. sels or hauled from the shore.

cumertos.

Sponges may be artiticially propogated from cuttings, and if in a favorable situation, in a sheltered bay, with a rocky bottom, overgrown by sen-weed and fresh ened by a gentle current, the cuttings will grow to a sponge two or threa times their size in one year. The chief drawback to successful sponge farming, which was carried on by the Italian (iovernment in 187:2, and more recently in Florida, seems to be the long interval, which the cultiva tor has to wait for his first crop, as they are not ready for the maket for from tive to seven ycais.

cowntrer.

The net work of clastic horny tibres, wheh remams brhind, aftet the living matter has been remourd, is the akeleton of the animal, which is the sposise of com merce. One would not weropnize in the dark-almost black sulistamee, so full of mud, sand and shells, the hight yellow soft aftiairs in our shops. A vi,it to one of chese sponge watehousen in Iondon or Now York would give us an insight as to the way this change is brought about, where the manipulator, frequently a na tive 'lurk, is elogaged in effecting this interesting motamorphosis. Surzonded hy a number of tubs, each containing a dark and foul stuelline liquid, he states to work, und by macemation and washing the gelatinous substance is dispoed of. First the sponges are separated, the "erans," which is a poor quality, is lorokin in small

