end of a twenty-two-inch drum four feet long. The opposite end of this drum was flush, and into it the pipe nipple six inclies long was screwed, and ou the end of which the valves were sciewed, so that the pressure came on the underside of the value. Each valve was left open at the outlet end, and no nipple or pipe was screwed in the discharging end. The water was delivered by the valve directly into a catchall which returned the water into a tumbling bay, from which it flowed through combing boards into the fore bay and so to the werrs. Two sizes of weirs were used six in hes by elght inches, and eight inclies by twenty one and one half inches.
The above was the procedure in testing valves when passing the largest quantities of hater. With the medium sized valves the water was allowed to discharge into a 3,000 -rallon cistern, where its quantity was measured direcily by volume. With the smallest sizes, the water flowed into one or the other of iwo collecting barrels and weighed directly on platform scales. A pressure-gauge connected to the twenty-two-inch drum measured the pressure of the water, while a second pressure-gauge, connected by a nipple screwed inen the pipe-nipple which connected the drum with the valve, gave readings of what is entuled the "pressure at the valve." The quarter-inch pipenipple from the pressure-gauge was screwed into the other one sufficiently far so that its end was fied off flush and smoothly with the interior wall of the nipple through which the water flowed. Readings were taken of the pressures and height of water in the cisterns and on all the weirs once per minute. Most of the runs were of twenty minutes duration and were timed by a stop-watch which had been calibrated at the observatory. In order to convert pounds of water to gallons or to cubic fect, the specific gravity of the water used was accurasely determined and found to be 1.00074 (23t cubic inches were taken to be a gallon). The weirs, cisterns, scales and pressuregauges had all been accurately calibrated and calibration curves drawn to a large scale from which corrected readings were taken.
Th.e following results and conclusions were drawn :
The amounts of water passed under given condations by the gate and angle valves which were tested were approximately double and one and one-half times respectively the amounts of water passed by the globe valves of exactly the same nominal size under the same conditions.
By the efficiency of the valve is meant the ratio of the number oi gallons of water per minute that it actually discharged to the number of gallons which theoretically flow through a frictionless pipe of an area equal to the actual area of standard black pide and at the velocity due to the head. For fourteen of the valves tested there was apparently one pressure at which there is a maximum efficiency of fow of water; for ten of the valves the efficiency scems to be constant at all pressures; while, with five of the valves tested, the efficiency decreased as the pressure increased. With valves of certain makes the efficiency of the different sizes vary «reatly. For example, while the $1 / 2$-inch and 1 -inch gate valves of a certann make have an efficiency of 71.9 per cent. and 72.2 per cent. respectively, the efficiency of the 34 inch valve of the same make is only 58.9 per cent. By a comparison of the weights of the valve with the current market price of them, it would seem that the amount of water passed by a valve of a given size is approximately directly proportional to its cost. In other words, that, if you pay 45 cents for a $\quad 3$-inch valve and 90 cents for a 36 -inch valve of a different make or type, the amounts of water passed by these two valves will be approximately in
the proportion of $45 ; 90$, or as $1: 2$. We are of the opinion that the relative efficiency of valves may be determined by the relative drops in pressure from the standpipe to the valve. In other words, that, of two valves discharging water from a standpipe at eighty pounds pressure, the one having the greater efficiency will have the least pressure at the valve. This is, therefore, suggested as a rough test by which to determine the relative efficiency of valves.

A few experiments were made with one of the valves at six different pressures with a nupple four diameters long in the outlet of the valve, and from which it was concluded that nipples of this length caused an increased loss of about two per cent.
From the above it will be seen to be advisable to use a gate valve when the full capacity of the valve is always desired and a globe valve should only be used in a water line when excessive throtuling of the quantity or pressure is immaterial. A three-fourth gate valve will pass more water than will any of the one-inch globe valves tested, while a one gate valve of a certan make will actually pass more water than will a certan one and one half inch globe valve at the same pressures. As the pressure is a direct measurement of the h.p. exerted in pumping water, it will be readily seen that when it takes upwards of 200 pounds pressure to get 100 gallons per minute through a one-half gate valve or threequarter globe valve, and that from seventy to ninety pounds pressure is required to get the same amount of water through three-quarter gate valves, and from fifty to eighty pounds pressure to get that amount of water through one-inch globe values and only from ten to twenty pounds piessure to get that amount of water through one and one-half gate valves, it would seem that, in the best practice, water valves at least one size larger than the nominal size of the wrought iron pipe should always be used. There is apparently much chance for the manufacturers of small valves to improve
the water discharging capacity of theird valves and at but a slight increase in first cost to the purchaser. In the opin.inn of the writer, this subject should come hine to the members of this association, ind these facts, it is thought, may be of smme slight value waen complainis are makle by householders that they are unable to dritw water fast enough, and for the sery good reason that not only the pipes it their houses are too small, but that valves are used whose chief duty, it would seem, was to throttle the discharge ; and, furthermore, that an increase in pressure of from torty to eighty pounds at the rump ing station may be required, in order to force the desired amount of water through the small valves and faucets which man be found in many divelling houses and other buildings of cheap construction

To deduce from these data conclusions as to the relative expenses of using smal valves and those of adequate size is almost impossible, and, except in some definite case, would be valueless. If.ons wanted a bucket of waler with which it quench an inctpient conflagration, the value of a valve which would give the desired amount of water in the least une would be inestimable. Generally speak.l ing, this investigation would show that by the use of gate valves of the proper size, pressures one-quarter to one-half of those that would be needed with smaller valses would be sufficient. This may not hold true and exact with the larse valves of city water works, but it doubitess does hold true with the smaller pumpins plan! and hydraulic elevator service of office buildings and the like. In any particulad plant, knowing the cost of steam deliverte at the pump, some approximate estimate can be marde as to the cost of using smal valves and large steam cylinders and high steam pressures as compared wilt values of more generous discharge and small steam cylinders and lower steam pressures. \qquad
It is reported that T. H. Wisisins, C.E, has tendered his resinnation as :own engineer of Cornwall, Ont.

"BEAVER" PORTLAND CEMENT
Manufactured by; THE BEAYER PORILAKD CEMENT CO., LIAIIED - WORKS: MARLBMKK, OKI. COMMERCIAL WOOD \& CEMENT COMPANY

Larges: Works in Canada.
Write for Prices

BELLHOUSE, DILLON \& CO., 30 St. Francois .Yaticr.St., MIontrcal Sole Agents for the Compaguie Generalo des Asphaltes do France (Rock Asphalt). Paum NORTH'S CONDOR
Paving and Fire Brick a Specialty
' DYCKCBRHOFP "' and " WRITB CROSS " Brand

"CERMANIA"
BRAND
HIGHEST CLASS PORTLAND CEMENT
McGILL UNIVERSITY TESTS, 1898:
Fineness :-residue on 100 sieve, 4.45%.
Tensile strength : neat: 7 days, 629 lb .
773 lb.
-——OF ALL FIRET CLASS DEALEIRS.——O

\& DHAATM BH BRAND

As used for the following work: Keewatin Power Con's dam at lake, 'f the Words; Canada Piper Cnix dam and Windsor Milk: Goverenmense Bre inater, Muftalo; Dry Doiks, Ismoklyn and Ieague IIsand I Iudion Hiver Tunnel; and a vast amount of
Camada and the States
OF ALL FIRST CLASS DEALBRS.

