has shown that the error due to settloment, other things being equal, in propurtional to the hogeth of liwe run. In ordinary levelling operntiom, the character of the gromil affecto the work in a different way, the feet of the observer compress the prumill near the tripod legs, and displace the line of sight in the interval of time between levelliug and reading the rel. Tho ohviate this. Culond tionlis has recommend of that two of the lage be nilways pheed parultel th the line of wight. The use of the mirror,"alrenly notieed, would alser remave this source of error.
The largest souree of oberemationel armon is bilined to be due to the want of carcful centering or reading the bubble. Wivery leveller should know what rod reading is envered ly a nange of one division of his bubble at a given disthuce of, say 100 fiet, in order that he may fully appreciate the cflect of urrors of this kind.

When the illumination of the two ends of the bunble is ditferent, an error in centering is almost sure to follow, here being a tendency to bring the lubble too mueh towards the light. Error is also introdueed through parallax, the bubble being viewed obliquely to its leugth. It has recently been urged by a German observer-Dr. Reinhertz - that the bubbless should be viewed in protlle. Cleurness of the glass and distinetness of the graduations have much to de with the aceuraoy of bubble readings. Errors of rod reading are more common with a target than with a spenking rod. The best check on the former is for both rodman and leveller to mike independent readngs, Whero throe wires are used, crrors with self-reading rods are of very rare oecurrence. The menn of the three readings is ulon without doubt more ncourate than a single reading on a target rod. It does not by any menns follow thut becouse a target rod eads to 001 of a foot that the reading is aceurato within that limit. A differcnee in the illumination of the rod will also affeet the rellutive necuracy of the readings, and a line ruming east and west will prolubly show different results, according as it is levelled in the forenoon or ufternoon.

Under personal errors we have mercly to note that each observer has his own peculiarities, which will largely affict the resulting difference of level over a great lenghth of line. This is in fact the personal equation of the obscrver. To quote from the report of the Chicf Engineer, U. S. A., for 1884: "These diserepnucies vary with differ"ent observers, and are not even constaut for the sume observer, are " nearly propurtional to the distance, and seem tw be independent of "the nature of the ground, the direetion in which the work is done, "the season or the numuer of supportiog the rod." The results of some reecnt levels on the Mississippi survey go to show that this personal equation may be nomewhat evmescent. particularly with young observers, and that cerery line of levels should be duplionted in opposite directions by the same observer within the shortest possible limite of time. in orter to reduce the probability of change in the personal equation. With skilled obscrvers of long practice, this habit is probably a constant from year to year.
For the cffiets of atmospherre errors I camot do better than quote from Profissor J. B. Jolnson, who was fir some time cugaged on work in comection with the Lake survey. (Van Nostrands May. for Oct. 1883.)
"Errors from this source may be classified as coming from: 1, " Wind; 2, Tremulousness; 3, Variable Refraction.
" 1 . Wind generally shakes the instrument, and wake, the holdiug "of the rod difficult or impossibte. For two seasms I have used a " tent on windy days to protect the instrument, aod with great sucess. "Good woik can be done in this way so long as the rod can be held. "We also have large square canvas umbrellas that can be set on the " pround to the windward of the instrument, and these effectually "shield them in ordinary windy wenther.
"The tents used were wall-tents, $5 \times$ lif fect, and one 8 -foot centre " pole. A square iron trame, $3 \times 3 \frac{1}{2}$ feet, sewed into the canvas near "the top, furmed the lateral support there. It was held down by six " or cight steel pins, 18 inches loug and inch diameter, with Hat " heads. These passed through irou rings sewed into the bottom. " There were openings for the line of sight and a flap for the observer " to enter and pass out with the instrunuent. These temes were made " to be used on Gulf coast at a very windy season, when one half tho

