8. A gets ${ }_{2}^{2}=\$ 2666_{3} . \quad B$ gets ${ }_{i}^{7}=\$ 9331$.
9. (1) When the hands are on opposite sides of the figure III. The minute-hand will have gone 12 times as far from the figure XII as the hour-hand has from figure III, and is still as far from reaching figure III as the hourhand is beyond it, or ${ }_{1}^{1} \frac{1}{3}$ of the distance from XII to III. The minute-hand has, therefore, gone $\frac{18}{1: 3}$ of that distance \therefore the time is $1 \frac{2}{3}$ of 15 minutes past 3 o'cluck. (2) When the minute-hand has caught up to the hour-hand or gimed 15 minute-spaces \therefore the time is $\frac{12}{11}$ of 15 minutes past 3 o'clock.
10. Receiving back once as much as he spent would bring his money up to $\$ 720 \therefore$ the other $6 \frac{1}{2}$ times must increase it from $\$ 720$ to $\$ 1305$, that is by $\$ 585 \therefore \$ 585=$ $\$ 90=$ amount spent.

Degember, 1885.

1. $2,3,5,7,11$.
2. (a) $\frac{14}{2} .3$.
(b) L. C. M. $=28152$.
3. Amount left at end of one year $=\frac{2}{3}$; amount left at end of next year $=\frac{5}{7}$ of $\frac{2}{3}$, which $=\$ 900$; hence the whole fortune $=$ * 1890 .
4. The remainder after dividing $159 \frac{1}{7}$ by $12 \frac{5}{6}$, which is $5 \frac{1}{7}$.
5. $3 \cdot 74976 \div 60 \div 24 \div 7={ }^{\circ} 000372$.
6. $\$ 27.50 \times 11 \frac{13}{4}=\$ 323.12 \frac{1}{2}$.
7. The unit of length is the yard; of time, the mean solar day; of sterling money, the sovereign or pound sterling.
8. $\$ 132$.
). In 60 hours (L. C. M. of $10,12,15)$ the first could fill it 6 times ; the second, 5 times; the third, 4 times \therefore all together would fill it 15 times in 60 hours, or once in 4 hours.
