that the silicates of alumina in sedimentary rocks may combine with alkaline silicates to form feldspars and mica, and that it would be possible to crystallize these minerals from hot alkaline solutions in scaled tubes. In this way I explained the occurrence of these silicates in altered fossilferous strata. My conjectures are now confirmed by the experiments of Daubrée, which serve to complete the demonstration of my theory of the normal metamorphism of sedimentary rocks by the interposition of heated alkaline solutions.

But to return to the question of intrusive rocks : Calculations based on the increasing temperature of the earth's crust as we descend, lead to the belief that at a depth of about twenty-five miles the heat must be sufficient for the igneous fusion of basalt. The recent observations of Hopkins, however, show that the melting points of various bodies, such as wax, sulphur and resin are greatly and progressively raised by pressure, so that from analogy we may conclude that the interior portions of the earth are, although ignited, solid from great pressure. This conclusion accords with the mathematical deductions of Mr. Hopkins, who, from the precession of the equinoxes, calculates the solid crust of the earth to have a thickness of 800 or 1,000 miles. Similar investigations by Mr. Hennessey however assign 600 miles as the maximum thickness of the crust. The region of liquid fire being thus removed so far from the earth's surface, Mr. Hopkins suggests the existence of lakes or limited basins of molten matter which serve to feed the volcanos.

Now the mode of formation of the primitive molten crust of the earth would naturally exclude all combined or intermingled water, while all the sedimentary rocks are necessarily permeated by this liquid, and consequently in a condition to be rendered semi-fluid by the application of heat as supposed in the theory of Scrope and Scheerer. If now we admit that all igneous rocks, ancient plutonic masses, as well as modern lavas, have their origin in the liquefaction of sedimentary strata, we at once explain the diversities in their composition. We can also understand why the products of volcanos in different regions are so unlike, and why the lavas of the same volcano vary at different periods. We find an explanation of the water and carbonic acid which are such constant accompaniments of volcanic action, as well as the hydrochloric acid, sulphuretted hydrogen and sulphuric acid, which are so abundantly evolved by certain volcanos. The reaction between silica and carbonates must give rise to carbonic acid, and the decomposition of sca-salt in saliferous strata by silica in the presence of water, will generate hydrochloric acid, while gypsum