of geometry prepares us to appreciate shore by a geometric process." its character. Greeks."

it to the Pyramids. . . . Thales meas- and treated it as a liberal science, giv-

A clearer understanding of the basis, used the distance of vessels from the the advance in geometrical knowledge these applications to the concrete. due to Greek intellect. "The first Again, we are told by the historian name," says Allman, "which meets us Eudenius that he attempted "some in the history of Greek mathematics is things in a more abstract manner, and that of Thales of Miletus (640 536 some in a more intuitional or sensible B.C.)... Thales himself was engaged manner." Thus it is clear that he in trade, is said to have resided in would continue to employ empirical Egypt, and, on his return to Miletus in measurements to obtain approximate his old age, to have brought with him results, which, by the creation of definifrom that country the knowledge of tions and the use of axioms, he would geometry and astronomy. To the gradually replace by strictly scientific knowledge thus introduced he added theorems. Allman attributes to Thales the capital creation of the geometry of the discovery of the two theorems lines, which was essentially abstract in (a) The sum of the three angles of a The only geometry triangle is equal to two right angles; known to the Egyptian priests was (b). The sides of equiangular triangles that of surfaces, together with a sketch are proportional. (Hence the basis of of that of solids... obtained empir- the theory of similar figures.) Thus, ically; Thales, on the other hand, in- from a philosophic point of view, says troduced abstract geometry, the object Allman, "we see in these two theorems of which is to establish precise relations of Thales the first type of a natural between the different parts of a figure, law-i.e., the expression of a fixed so that some of them could be found dependence between different quantiby means of others in a manner strictly ties, or, in another form, the disenrigorous. This was a phenomenon tanglement of constancy in the midst quite new in the world, and due, in of variety—has decisively risen"; fact, to the abstract spirit of the whilst, from a practical point of view, "Thales furnished the first example of "In connection with the new im-; an application of theoretical geometry pulse given to geometry, there arose to practice, and laid the foundation of with Thales, moreover, scientific as an important branch of the same—the tronomy, also an abstract science, and measurement of heights and distances." undoubtedly a Greek creation. The After Thales comes the contribution of astronomy of the Greeks differs from the Pythagorean school. "Pythagoras that of the Orientals in this respect—changed geometry into the form of a that the astronomy of the latter, which liberal science, regarding its principles is altogether concrete and empirical, in a purely abstract manner, and inconsisted merely in determining the vestigated his theorems from the imduration of some periods, or in indi- material and intellectual point of view." cating, by means of a mechanical pro-He was the first person who introcess, the motion of the sun and duced weights and measures among planets; whilst the astronomy of the the Greeks. The geometry of areas Greeks aimed at the discovery of the plays an important part in the work of geometric laws of the motions of the this school (e.g., Euclid I. 47), thus heavenly bodies." Thales "measured exhibiting the mode of evolution from the Pyramids, making an observation its Egyptian empirical source. Again, on our shadows when they are of the "the Pythagoreans first severed geomsame length as ourselves, and applying etry from the needs of practical life,