ly formed by the pupil and permitted by the teacher, but exercises of the above description would prevent such objectionable practices.

SUBTRACTION.—Series of exercises: 1st. From any given number take all the numbers below it; 2nd. Take a given number from numbers above it; 3rd. Find the subtrahend; 4th. Find the minuend.

ILLUSTRATION. — Lesson, subtract from ten the numbers below. teacher takes the frame and sets off ten balls on the first wire; he then separates one ball from the group, and asks how many remain? " nine; reforms the group, and separates two balls, asking how many remain? "eight;" again reforming the group, he separates three balls, and asks how many remain? "seven," &c. Proceed in the same way with other subjects, also with marks on the blackboard. After the class has had sufficient practice in subtraction, it would be advisable to give examples combining Addition with Subtraction.

MULTIPLICATION.—Series of Exercises: 1st. Keep the multiplier constant; 2nd. Vary the multiplier; 3rd. Factoring. This rule should be explained through Addition.

ILLUSTRATION.—Lesson, multiplying by two. The teacher uses two wires, and first slides a ball to the extremity of each, and asks how many ones are there? "two;" how many in all? "two;" then two ones or twice one are how many? "two." He next places two balls at the extremity of each wire, and asks how many balls on each? "two;" how many on both? "four;" then two twos or twice two are how many? "four." Next placing three balls at the extremity of each wire, heasks how many threes are there? "two;" how many in all? "six;" then howmany are two threes or twice three? "six," &c., &c. The multiplication table should not be committed to memory until the pupil is more advanced.

Division.—Series of Exercises. 1st. Keep the divisor constant. Select the smallest dividend that will contain it evenly and proceed upwards. 2nd. Divide numbers which will leave a remainder. 3rd. Questions involving Multiplication and Division.

ILLUSTRATION. — Lesson dividing by three. The teacher uses three wires of the frame, and first slides a ball to the end of each wire, asking how many balls? "three;" how many threes? "one;" how many threes in three? "one;" divide three by three, "one;" then he slides two balls to the end of each wire, and asks, as before, how many balls? "six;" how many thees? "two;" how many threes in six? "two;" divide six by three, "two." Again he slides three balls to the end of each wire, asking how many balls? "nine;" how many threes? "three;" how many threes in nine? "three;" divide nine by three, "three," &c.

Fractions.—Our exercies in Fractions with young children must necessarily be of the easiest kind, and always performed through the means of objects. The teacher by dividing an apple into halves, quarters and eighths, can give to the child correct ideas of a fraction, and elicit answers to questions similar to the following: What is the difference between one-half and one-fourth? What is two times one-half? How many quarters in two?

REDUCTION is a rule that usually presents great difficulties to the learner. The reason of this is that pupils generally are taught the tables of Money, Weights and Measures, in a very objectionable manner. How often do we find classes of small children repeating these tables, and at the same time they have no understanding of the words they are using. I have known instances of children being able to repeat accurately all the tables, but who being asked what an inch was, could give no answer. Every