gas, which fumes in air. Chlorine has a very strong affinity for Hydrogen, forming the very stable compound, Hydric Chloride: while Bromine unites with Hydrogen with far more difficulty to form HBr, which can be more easily decomposed than HCl. lodine combines very imperfectly with Hydrogen to form the quite unstable compound, Hydric lodide, which, if exposed to air, immediately decomposes.

- (a). (1). Argentic Nitrate (AgNO₃) added to any solution containing a Chloride will give a curdy precipitate (AgCl) insoluble in boiling Hydric Nitrate but readily soluble in Ammonia.
- (2). Heat the suspected liquid with Manganic Oxide (MnO₂) and Hydric Sulphate (H₂SO₄), when Chlorine gas will be evolved.
- (1). An iodide may be detected by its action upon some starch paste moistened with a drop or two of Chlorine water.
- (2). Argentic Nitrate produces a pale yellow precipitate of Argentic iodide, insoluble, both in Hydric Nitrate and Ammonia.
- (3). Plumbic Acetate Pb (C₂H₃O₂)₂ gives a bright yellow precipitate of plumbic iodide.
- (1). A Fluoride may be detected by mixing the liquid with Hydric Sulphate, and heating it, when Hydric Fluoride (HF) will be evolved which may be tested by its power of etching upon glass.
- (b). The following reaction occurs:— $2KHO + Cl_2 = KCl + KCLO + H_2O$. That is, a mixture of the Chloride and the Hypochlorite of the metal Potassium.
- (c). Pass Chlorine to saturation into a strong solution of Caustic Potash (KOH), then boil the solution for some time.
 - 1st. Potassic Hypochlorite is formed.

2nd. This salt is decomposed into a Chloride and Chlorate.

$$_{3}$$
KClO = $_{2}$ KCl + KClO $_{3}$.

- Q—"Give the principal Hydric Salts of Phosphorus, (a) How are they formed? (b) Give some of their distinguishing tests."
- (1) H₃PO₃, Trihydric Phosphate, or Phosphorous Acid, is formed by adding H₂O to

P₂O₃. It is a debasic acid, two atoms of Hydrogen being replaceable.

- (2) H₃PO₄, Trihydric Phosphate, or Phosphoric Acid is formed if a solution of P₂O₅ in water, be boiled. This acid is an exceedingly definite body, is so stable that it is destitute of oxidizing power, and is not reducable by nascent Hydrogen. It may be made to crystallize. It is a tribasic acid, and is distinguished in solution by giving a yellow precipitate with AgNO₃=Ag₃PO₄, also a white precipitate with Ammonia and Magnesium Sulphate=Ammonium Magnesium Phosphate NH₄MgPO₄+6H₂O.
- (3) H₄P₂O₇, Pyrophosphoric Acid is formed if tribasic Phosphoric be heated for some time to 210⁻,

$$_{2}H_{_{3}}PO_{_{4}} = H_{_{4}}P_{_{2}}O_{_{7}} + H_{_{2}}O.$$

It is a tetrabasic acid. Tetrasodic Pyrophosphate, $Na_4P_2O_7$, is formed by heating Hydrodisodic Phosphate to redness, $2Na_2$ HPO₄=H₂O+Na₄P₂O₇. This substance gives with AgNO₃ a White Precipitate Ag₄P₂O₇.

- 4. HPO₃ Metaphosphoric Acid is formed when P₂O₅ is brought into contact with H₂O P₂O₅+H₂O=2HPO₃ or by evaporating a solution of Trihydricphosphate and igniting the residue. The corresponding Sodic Salt is formed by heating the Microcosmic Salt (Na NH₄) HPO₄ when H₂O and NH₃ are driven off and NaPO₃ is left. This acid is Monobasic and may be distinguished by the gelatinous precipitate formed by Ag NO₃ = AgPO₃.
- 5. H₃ PO₂ Hypophosphorous Acid may be regarded as HPO₃ in which one atom of O has been replaced by two atoms of H, H PH₂O₂. The corresponding Sodic Salt Na PH₂O₂ is formed by adding P to a solution of Caustic Soda, thus: 3 NaOH+4P+3H₂O=PH₃+3NaPH₂O₂.
- ().—6. (a). Name the chief ores of iron-(b) How is the metal obtained from its ores? (c) What is the chemical difference between cast-iron, steel and wrought-iron?