BRADLEY'S CUSHIONED MAMMER.

We apoke in high terme of this invention upon the occasion of its exhilition at the frir of the Aherican Institute in this city. Since that time its use has been greatly extended, and it $i=n o w$ introduced into many of the most important manufacturing establishments in the country. Its manufacturers have recived a great number of favorable testimonials from those who have proved its merits in practical and continued use The hamuer is adjustablo in line of action, length of stroke, rapidity of motion, and in weight and force of blow Each or any of these myy bo changed, and most perfectly conirolled at the will of the operator. In a!dition to these desirable qualities, it is adaptable to any work which requires continuous, exact, positive, and forciblo yet an elastic stroke The exreedingly difti ult swaging of cotton-spiadles, to which this hammer has been found eminently adapted, may be ivstan ed as an ill, stration of the advantages posses. sed by it in work of this kind It is statid that no other hammer has been able to turn out cotton-spindles in quality and quantity as satisfactorily as this The capacity of tie hammer is increased far beyond that of other hammers of its rlass, and at the same time it is compact and portable. is the use of the rubber springs obviates the stubborn jar of other insmmers, it is far more durable and involves much less outlay for repairs All parts of the hammer are made of iron except the helve. The anvil-block has a foundation independent of that of the mann bed, but the parts are so united as to transmit nearly the entire jar from the stroke of the hammer to the anvil-bed alone. The helve is nicely balanced, and swings upon two adjustable hardened steel eccentrics Mction is imparted to it by a broad steel ecentric, oprating in onnertion with the clinch and the rubber cuslions, the length of the struke being govinued by the adjustable ercentric The force of the blow is grestly influenced by the reactive and united action of the cushions. Thin action is so perfect that when the hammer is in rapid motion the hand, when placed upon the machine, can scarcely identify the strokes of the hammer. The action of the helre, through the use of the yoke and cushions, hes a Hexibility which resembles that of the smith's arm. It is claimed tbat the helve never brakef, and that the broad stecl eccentric obviates friction and heat. The aljustable cushion at the apex of the standard assists the lower cushion in heavy work, and also checks the upward motion. A uniseraal joint connection prepents any twisting of the yoke aud consequent bind or friction A foot-treadle is used to apply and r gulate the power, and is an arranged that the operator can staud in front or no cither side. A gentle pressure of the foot upon the tradle ra"ses the tightener to operate upon the brit, and thus varies the stroke in proportion to the pressure apphed. On removing the foot, the treadle flies up, bringing a urake upnu the lalance-wheel, stopping it instantly. The hammer is thus always left up, and it cannot stop with the dies closed. This is considered a very important featuro. - American Artısan.

VERTICAL ENGINE.

We illustrate on page 36 , a rery neat vertical engine of a type designed and patented by JIr. Jeremiah Head, of Mindles. brough, the particular engine shown being one constructed for the Middlesbrough Wrought Nail Company (Limited), by Mesers. H. Alexander \& Son, of Cirencester. The conditions required to bo satisfied by this engine were: that it should work direct upon a line of shafting on either side; that it should make 120 revolutions per minute; that it should go at a uniform speed, whether all the nail-making machines were in action, or some only, or none at all; that it should woik as economically; that it should occupy little floor space; that there should be small hability to wear ; and that repairs should be casily executed if necessary. To fulfil these conditons the following arrangements were made, embracing some mechanical novelties.

The crank-shaft is of cast steel, carried upon tour bearings; the crauk pin is larger in section than the rest of the shaft, to prevent the usual risk of breaking there. There are, as will be seen from our engraving, two flywheels, one on either side, equi-distant from the crank, and cach close to a bearing. Tho crank and half the weight of the con-
necting rod are compensated for by welghts upon the flywheels. The inner bearings aro close to the cheeks of the crank. Within either flywheel is a sheave rith a strap passing thence to corrcaponding sheaves upon the extremitics of a horizontal spindle which drives tho governor. On either side of the crank between the inner ant outer bearings is an eccentric, the one for working the main slide, and the other for the expansion slide. These armogements securo symmetry, equality of wear, and freedom for shaking at high speeds. The sylinder is intended to bo steam jacketted in this type of engine, though it was not made so in the prasent instance. In the engine we illustrate the cylinder is 22 in . is diameter with 24 in . stroke.

The piston is one of the solid class, and is packed with Ramsbottom rings, but instead of being placed each in its own groove, as is the usual plan, these are inserted in pairs, in two grooves of twice the ordinary width, as shown at $y . ?$, Figs. 4 and 5, on the opposite page. The rings forming each pair cross joint one with another, each one being prevented from turning by a small stud scrowed into the bottom of the groove, and situated between the butt-ends of the ring. It is found that whereas Ramsbottom rings often stick, when placed between the two fixed surfaces of a single groove, they never do when one suriace is a moving one, as in this arrangement. Greater security against leakage of steam past the piston is also obviously secured by crossing tie butt joints of two rings in contact.

The main slide (see Figs. 4. 6, 7, and 9,) is cylindrical, coutrolling the steam in the ordinary way, so as to give a certain awount of lead and constant cut-off towards the end of the stroke. As will be seen from the detailed view Fig. 9 , it has small grooves cut round it to prevent leakage past of the steam, but thoy do not make the entire circuit of the valve for a reason which will presently be explained. The man plide spindlo is of cast iron, as well as the slide itself, for the latter being perfectly balanced but little force is required to move it Wathin the main slide is an expansion slode, similarly cuustructed, and actuated from the opposite end of the slide chest. The expansion slide l, is shown separately by Fig. 8. The two slites are carefully fitted and ground into their places, as is now frequently done with steam ham. mer valves, and in other cases where the cylindrical constructiun is used. When, however, these valves wear slack, which they are liable to do after a time, it is proposed to split them duwn one side from end to end, first drilling a series of holes, as shown in Figs. 8 and 9. By this device the internal presure of the steam is utilised to keep them right, while at the eame time the stregth of the upposite side of the valve is so rfgalated as to prevent too much yielding, which would result in frution. When split the joint of the outer valve will be on the sule towards the cylinder, while that of the expanston valve will be eactly opposite. Corresponding faciags pass from top to buttom of the inner surface of the slide chest and of the main valve.

As will be seen from Figs. 4, 6, and 7, the slide chest is made removable from the cylinder, so that it, together with the valvé, may be kept in duplicate if desired, and at any time changed in two or three hours' time. The main slide valve is worked direct by the corresponding eccentric. The expansion slide is worked from a weigh-shaft passing below the cylinder. The rod connecting the expansion eccontric with the lever upon this weigh-shaft is severed about half way up, the two ends terminating in blocks, working in two radial grooves in a horizontally situated vibrating link. By means of a weigh-shaft operated by the governor, as shown in Fig 3, two levers upon this shait, and two curved links passing from the ends of these levers to the two p.rts of the eccentric rod, the link blocks already mentioned are beld in position. The rise and fall of the governor obviousl, regulates the length of siroke of the expansion ralve and ocontrols the cut-off of the steam.

The governor is of the cross-armed description, but s.m been improved in several particulars. It is driven by the horizontal spindlo consected by two straps with the crankshaft, as previously described, and as shown in Figs. 1 and 2 The pendant arms of the governor are furnished with links passing upwards to a small cylinder, which rises and falls around a piston secured to the top of governor spindle. A single stud placed vertically in the centre of the tup cover of this cylinder and furnished with a small crosshead, forms a

