

Figure A2: Detection probability function $d(q)$, when $r > 1$

If $r \leq 1$ then $d_1(q) = rq$ as before. If $r > 1$, than $d_1(q) = rq$ if $0 < q < 1/r$ and $d_1(q) = 1$ if $1/r < q < 1$. The iteration equation (A1) becomes

$$
V_{n,k} = p [d_i(q)(-K) + (1-d_i(q))(q) + V_{n-1,k-1}] + (1-p)[q+V_{n-1,k}] (A4)
$$

As in the Theorem, the optimal cheating level $q = q^*$ must make the partial derivative of V_{nk} with respect to p vanish. But the partial derivative of V_{nk} with respect to p is

$$
V_{n-1,k-1} - V_{n-1,k} - (K+q)d_r(q)
$$

It follows that $q^* < 1$ if

$$
\frac{V_{n+1,k+1} - V_{n+1,k}}{K + 1/r} < 1,
$$

which is certainly true if $V_{n-1,k-1} - V_{n-1,k} < K$. In practice, this sufficient condition was found to be adequate; as long as the value of K was large enough that for all n and k, the expected value difference $V_{n-1,k-1}$ - $V_{n-1,k}$ did not exceed K, then any value of r could be allowed without altering the interpretation of the model, because q^* < $1/r$. It should be noted that this sufficient condition reflects that intuition that, for E to cheat at a level that makes detection certain (if there is inspection), the gain to E in seeing R use up an inspection must be very large.

As noted in the text, the basic model embodied in (Al) can be modified to include a variable, w, representing concealment effort Conceahnent effort refers to activities of the inspectee, E, which reduce the detectability of violations but also reduce the value. Suppose that $w = 1$ is the standard level of concealment effort, and a value $w > 0$ is actually chosen by E, changing detectability from r to $r = r/w$. Let $\alpha > 0$ be a parameter measuring the ratio of the relative rate of change (with respect to w) of the value q of undetected cheating at level q to the relative rate of change of **r** with respect to w. It follows that $q = q/w^{\alpha}$. Denoting E's expected payoff by V when concealment effort is included in the model, the recursion equation (Al) must be replaced by

$$
V_{n,k} = p[rq(-K) + (1 - rq) q + V_{n+1,k-1}] + (1-p)[q + V_{n+1,k}]
$$
 (A5)

To see how (A5) can be solved recursively, multiply each term by w^{α} to obtain

$$
\mathbf{w}^{\alpha}\mathbf{V}_{\mathbf{r},\mathbf{k}} = \mathbf{p}[\mathbf{r}\mathbf{q}(-\mathbf{K}\mathbf{w}^{\alpha}) + (1-\mathbf{r}\mathbf{q})\mathbf{q} + \mathbf{w}^{\alpha}\mathbf{V}_{\mathbf{r-1},\mathbf{k-1}}] + (1-\mathbf{p})[\mathbf{q} + \mathbf{w}^{\alpha}\mathbf{V}_{\mathbf{r-1},\mathbf{k}}] \tag{A6}
$$