EXPLANATION OF EXTERNAL VIEW OF THE OBSERVATORY.

- A. Thermometer for solar radiation.
- B. Screen of Venetian blinds.
- C. Thermometer.
- D. Opening in ridge of the roof, closed with shutters, to allow use of transit instrument.
 - E. Rain guage with conducting pipe through the roof.
 - F. Velocity shaft of the anemometer.
- G. Mast for elevating apparatus for collecting electricity.
 - II. Cord for hoisting the collecting apparatus.
 - I. Copper wire for conducting the electricity into the building.
 - J. Direction shaft of the anemometer.

EXPLANATION OF THE PLAN OF THE OBSERVATORY.

- A. Anemometer.
- B. Small transit for correcting time.
- C. Electrical machine for charging the Distinguisher.
- D. Peltier's electrometer.
- d. Space occupied by Drosometer, Polariscope, &c.
- E. Electrometer. e. Discharger.
- F. Distinguisher.
- f. Small stove-sometimes used in damp weather.
- G. Thermometer placed in the prismatic spectrum for investigations on light.
- II. Nigretti & Zambra's barometers and eisterns, 118 feet above the level of the sea.
 - I. Small-tube barometer.
 - J. Newman's barometer.
 - K. Aneroid barometer.
 - L. Quadrant and artificial horizon.
 - M. Microscope and apparatus for ascertaining the forms of snow crystals.
- N. Thermometer, psychometer, &c., 4 feet high. A space is left between the two walls to insure insulation and prevent radiation.
 - O. Ozonometer.
- P. Evaporater—removed in winter and replaced by scales for showing the amount of evaporation from the surface of ice.
- Q. Post sunk in the ground, and 40 feet high, to carry the arms of support for the Anemometer.
 - R. Solar radiator.
 - S. Venetian blinds.
- T. Iron rod beneath the surface of the ground connected with the discharger to insure safety.