hich have e *homolo*are termed

organic el, of St. dopted by (00-5-195.) re of these omologous d each horisuccessive st series are onp, etc.

 C_6H_2

es resemble milar trunsgents, and a
owest to the
ent, the lows at ordinary
or more car-

bon-atoms, are solid, while the intermediate compounds are liquids, becoming more and more viscid and less volatile, as they contain a greater number of carbon-atoms, and exhibiting a constant rise of about 20° C. (36° F.) in their boiling points for each addition of CH₂ to the molecule.

The individual series are given in the following table, with the names proposed for them by A. W. Hoffmann:

Methane	Methene			
CH_4	CH_2			
Ethane	Ethene	Ethine		
C_2H_6	$\mathrm{C_2H_4}$	C_2H_2		
Propane	Propene	Propine	Propone	
$\mathrm{C_3H_8}$	$\mathrm{C_3H_6}$	C_3H_4	C ₃ H ₃	
Quartano	Quartene	Quartine		Quartune
C_4II_{10}	$\mathrm{C_4H_8}$	C_4II_6	C_4H_4	C ₄ H ₃
Quintano	Quintene	Quintine	Quintone	
C_5H_{12}	$\mathrm{C_5H_{10}}$	$\mathrm{C_5H_8}$	C_5H_6	C_5H_4
Sextane	Sextene	Sextine	Sextone	Sextune
$\mathrm{C_6H_{14}}$	$\mathrm{C_6H_{12}}$	$\mathrm{C_6H_{10}}$	$\mathrm{C_6H_8}$	C_6H_6

The formulæ in the preceding tables represent hydrocarbons all of which are capable of existing in the separate state, and many of which have been actually obtained. They are all derived from saturated molecules, C_nH_{2n+2} , by abstraction of one or more *pairs* of hydrogen-atoms.

But a saturated hydrocarbon, CH4, for example, may