FOR THE PROVINGE OF QUEBEC.

Fach study is constantly arraigned for judgment, as it were, and is
compell nind is it to answer two questions; namely, what faculties of the ad is it calculated to develon? and of what p-actical use are these culties ? I am well aware that this is no new theory, and that every educator is constantly strtving to incorporate those studies into ystem of education and to invent such methods of instruction as give the maximum practical mental discipline to the masses. ere is one branch of eduaation, however, that has not received its e share of consideration in this parti zular. I refer to the study of
ewing. I would have this study subjected to the same tests and Wing. I would have this study subjected to the same tests and
ad or fall precisely as I would have rvery other. But I would not the instruction in drawing violate every law of development and our efforts turned to the mere production of apparent results, Ife the main and only legitimate end is lost sight of entirely.
In order that we may apply the proper tests let us enquire - What What drawing is? 2d, how we may learn to draw? nnd 3d, o inat use a practical knowledge of drawing would be to the masses the ordinary pursuits of ife?
Ist. Drawing is the disposition of liues upon a flat surface in such Way that when seen they create the same sense impression as does object which they represent. , these form an image of that from which they are reflected mage is flat and is composed of masses of different colors and Heerent degrees of light, and becauss it is an image it cannot be Ite the object which it represents unless that object is a flat surface thd parallel to the surfaco of the image. The picture of an object ffat and because it is so its normal position is parallel to the
ina, and because it is paral'el to the retina the image of the
cture will be like the picture itself, Learning to draw then is a velopment of the mind to an appreciation of the significance of the
aggement of lines upon a flat surface in such a way that their
apon the retina will be like the image of the object which they present.
${ }^{3}$ d. Since written or spok n language is quite inadequate to
Wribe the form and position of even very simple object, and since Wing is the language of form its office is to assist written language Then it is most delicient. The practical advantages of a knuwledge
appreciate the advantage it would be to every one, and particuto the mechanic and laboring classes if they had a command
wing sulficient to enable them to describe form readily and And all sorts of makeshifs are resorted to and much valuable time lost in attempting to convey ideas of form which a few strokes of pencil in the hands of one who could draw, would make most Plain. Furthermore drawing is a highly important factor in the
oducation of the manufacturing classes, because, as the study and acation of the manufacturing classes, because, as the study and mind to a higher appreciation of the beauty of form and the value
ople who have daily and hourly need of a knowledge of drawing
t who do not have occasion to write 'a dozen lines a month.
maty one will admit, I think, that it would be difficult to overthere is a wide spread and firmly-rooted prejudice that such a result of teaching drawing to every pupil is impossible in the time that
ith any amount of time it will be found upon examination that dere is a striking analogy between the mental processes of learning
preciate the form and significance of the arrangement of images pon the reitna, which in no wise resemble that which they present. In both the physical eye and hand perform the offices of echanical contrivances. The mind interprets both the form and Whificance of the images upon the retina and directs the hand in reproduction of these images. If the mental processes of learning read and to draw are so similar, then the methods of insHuction should be similar and must deal with the mind and
not with the eye or the hand. The teaching of reading is the With the eye or the hand. The teaching of reading is the
Ore difficult, however, as the child tries to learn, not only tho Find and significance of thirty-six arbitrary characters besides Tarious signs and marks, as well as the sound and siguitica ce of
im almost infinite number of combinations of these characters and almost infinite number of combinations of these characters and
arks; but to learn them so well that they are recognized with the
eatest rapidity and sounded with the greatest exactness. While
duch a way that they when seen create the same sense impress on does the object when it is seen; cr in other words it is simply of theng that the picture is not like the thing itself but is the imago that learning to draw is really a very simple process it has the hare tage that every one desires to draw, while no one, or but few, hare any desire to read, until they have learned how, and some-
times not even then; and because of this desire to draw as soon as this one point is madn the mind begins to create mental pictures. If then learning to draw is a mental process so similar to learning to read, and if it has the advantages I have named there can bo no ruson why we do not attain to similar results in proportion to the time devoted to its study excepl that the methods of instruction are not adapted to the end sought. This is, I think. really the case since all the popular methods of instruction aim to obtain the desired results by copying, and since a picture is like its image the mind can not be developed by the e methods to comprehend the differenc: between the solid object and its image. and, therefore, but very few ever attain to any practical skill in drawing, and all are hampered by such study. Hence the skepticism and the bigh talk about art indulged in on the one hand by those who have looked for practical results of the tenching of drawing in the common schools, and on the other han l by those who had some patent method of wasting time and in the fruitless attempt to t:ach drawing by copying.Ohio Educalional Monlhly
A. E. M.

M IS CELLANY

How to Study Science.-The method of study is also important, and just here is where many otherwise good institutions fail. Every student of science should meet Nature at first hand, and learn to observe her phenomena for himself. Lectures and text-books are but minor accessories to study; in the sciences they play a wholly subordinate part; in the laboratory, the field, and the museum, the chief work is to be done. No malter what branch of science is to be pursued, the student from the very first must meet it face to face. The biological sciences ought to be studied in the field, collecting; in the museum classifying; in the laboratory, with the miscroscope and the scalpel Far too often is the study of natural history degraded into a mere memorizing of classifications; as if the transitory part of science were more valuable than the permanent! The student $\mathrm{m}^{\text {F }}$ see, handle, dissect, and invistigate, for himself. He is to study the phenomena of life, and not merely the external appearance of a lot of stuffed specimens. Chemistry, and physics also, is to be studied chielly in the laboratory. It is not enough for a student to see experiments, he must himself perform them. Thus only can he learn the true scope of these great sciences. By a propor drill in qualitative analysis, he learns to observe closely, and to reason from his facts to their interpretation. Quantitative analysis gives him accurscy of manipulation, and an insight into the absolute value of experiment. This insight also results from delicate practice with instruments of precision in physics; a kind of exercise of the very highest educational value. If the course of study in any science can be capped by an original research leading t, the discovery of new facts, so much the better. In a German university the candidate for a doctoral degree in science in absolutely required to carry out such a research, and to submit a dissertation upon it. This is not a severe requirtent-every student who has boon decently trained is able to come up to it, all the popular notions about the mysteriousness of scientilic research to the contrary not withstanding. Why should we not aim to equal the German standard ?-. Prof. F. W. Clarke, in Popular Science Monlhly.

Manners.-Men succeed in their professions quite as much by complaisance and kindliness of manner as by talent. Demosthenes, in giving his well-known advice to an orator-that eloquence, consisted in three things, the first 'action,' the second 'action,' and the third 'action'-is supposed to have intended manner only. A telling preacher in his opening remarks gains the good-will of his hearers, and makes them feel toth that he has something to say and that he can say it -by his manner. The successful medical man, on entering a sick room, inspires into his patients belief in himself, and that hope which is favorable to longevity-by his manner. Considering that jurymen are scarcely personitications of peace and reason unmixed with passion or prejudice, a barrister cannot afford to neglect manner if he would bring twelve men one after another to his way of thinkmg. Again, has the business man any stock in trade that pays him better than a good address? And as regards the survival of the fittest' in tournaments for a lady's hand, it is not a ' natural selection' when the ald motto "Manners makeyth the man" decides the contust "At lust $\mid V i l k e s$, the best-mannered but uglest man of his day, thought so. 'I am,' h said, 'the ugliest man in the three kingdoms; but if you give me a quarter of an hours' start, will gain the love of any woman before the, handsomest' If kindliness of disposition be the essence of good manners our subject is seen at once to shade off into the great one of Christianity itself. It is the heart that makes both the true gentle-

