ite reactiops．The sulphate（CaSOi）is more soluble，and its solution is prrcipitated ly ammonic oxalate．
The materinla of this group are alfo distingulfhed by their erectra，and by the co＇ours they impart ti a colourloss flame． Batium givera green flame，rtrontium a carmine red，and cal－ cium a yellowish red．In making tbis teat a clean platinum wire is dipped in a folution of the chloride，and hold in the thame of an alcohol lamp or Bunsen buner．

Sxpabatina Mxtals of Grotp Fourth．

To a solution contarning the chlorides of the three metals， Ba, sir，aud Ca，is added a little sal ammoniac，and some ammonic carbonate．The white precipitate is collected upon a filter and carefilly washed．It is then dissolved in dilute muintic acid，and some alcohol and bydroftuosilicic acid added．The barium is thus all precipitated The filtrate is divided into two portions；to one add ammonia and salplate of lime solution；if a frecipitate firms in kalf an hour，the prosence of stroutium is proven．To the other portion add selphuric acid and filter．This removes nearly all the stron． tium and a large portion of the lime．In the filtrate，however， there will remain edough lime to yield a precipitatg with am－ monic oxalate．

If hydrofluosilicic acid is not to be bad，barium may be tested for with sulpbate of strontium，or，in acetic acid solution， with chromate of pota－h．
The following table gives the usual method of separating these metals as above described ：－

$\left.\begin{array}{c|cc}\hline \begin{array}{c}\text { Barium．} \\ \text { Whito．}\end{array} & \begin{array}{c}\text { Strontium．} \\ \text { White．}\end{array} & \begin{array}{c}\text { Caloium．} \\ \text { Whito．}\end{array} \\ \text { Precipitsto．}\end{array}\right]$

When the metals of this group exict in combination with phosphoric，oxalic，or bordcio acids，they are precipitated in grounthird，and require a special method of separation to be described in a future article．

Grode Fiftr．

This group embraces magnesinm，sodium，and potassium， with the rare metal lithium．With the exception of the first they are characterised by their flame resctions．
Sulpinte of maguepium $\mathrm{Mig}^{\circ} \mathrm{O}$ ，or Ensom salts，yields a white precipitate with ammonia，but if the colation contains ammonic chloride（fal ammoniac），a sol sble donble ralt is formed．In general analy is it is mecessary to add ammonic chloride before testing for group third，to prevent maynesium b ing precipitated in that group．With phosphate of soda NA2HPOt，a white precipitate is formed，characteristic of this metal．
Potasfic chloride，KC；in acid and neutral solutions，yields a yellow precipitate with perchloride of platinom．The most delicate way of testing fir potassium is to eraporate the solu－ tion to be tested with the reagent nearly to dryness on a water－ bath，ana to treat the reridue with a little alcohoi，when the precipitate will remain undissolved．Tartaric acid produces a crysta＇line precipitate in strong neutral solutions．Comyounds of polassium colour the flame violet，which appears red through a piece of olne glase．Hydrofluosilicic acid gives a white precipitate in strong solutions．

Sodium salts colour the flames intenscly yellow．
Ammoninm salts，hentid with potash or lime，liberato freo ammonin，which may be recognised by its smell，its action on test－paper，and its fumes when a rod moistened with muriatic acid is brought near it．

Analysis of Alloys．

Having become familine with the reactions of all the principal metal：when in folution，the student 18 prepared to beifa the complete antlysis of any alloy．

In dissolving a metal or alloy，nitric acid is usually em－ ployed．A small quantity of the finely divided alloy is covered with concentrated nitric acid，and gently heated under a hond，in a fire place，or out of doors，for haif an hour．If it dissilives completely，gold，platinum，tin and anti－ mony are probably absent．The aciu solution may n w be placed in a porcelain di－h，and evaporated almest to drynefs， then diluted and analysed in the manner already described． The eeparation into groups is conducted according to tho table：－

Add HCl to solution．

Solution．

安	Groups II．， 1 III．，IV．，and V． Add H2S to filtrato． Proo． Solution．			
	\％	Pree．		IV．，and V． and（NHis）2S． ution．
	运	－	Preo．	ps IV．，and V． （ NH$)_{2} \mathrm{CO}$ ． Solution．
	莿	边		Group V． $\mathrm{Mg}, \mathrm{K}, \mathrm{Na}, \mathrm{Li}$.

THE MACAINE ROOM AT THE VIENNA EXHIBITION

Oor engraving on page 295 is from the Illustritie Zeilung of I．eipsic and represents a view in the machinery department at Vienna．The large machine on the right is a double steam engine of one hundred horse power，by Sigl，of Berlin．Near to this is the ge eat sugar refiang apparatus by Heckmann，of Berlin．

The sign Oeslerreich at the left，signines A＇stria；that under the banners，Deutsches Reich，signifies German Empiro．

THE MONONGAHELA BRIDGE．

The Pennsylvania Railroad crosses the Monongahela river at Pittsburg by a bridgo of eleren spans，amounting to a total length of 1622 feet．The superstiuctore was at first construct－ ed of timber with the exception of the channel span， 260 ft ． long which was built of iron．The East span has lately been replaced by an iron structure which we illustrate on fage 294 The illustration is from the columns of Engineering．The following are the principal dimensions：

Length of main＂\quad ．．．．．．．．．．．
Distance centre to centre of trusses．．．．．．．．．．．．． Height of truss，centre to centre of chord ping．．． Height from top of masonry on bridge seat to base of rail

