yet been found in, this country that posses: the superior qualities of the specular ores of Lake Superior, and for this purpose these ores must always be held in high esteem. Much thought has been given recently by the iron and ateel manufacturers to a new stoel made by a manufacturing company of Chicago; several cold chisels for use in the mines, after trial, have been found to give better satisfaction than the tools cosio by the celebrated manufacturers in Pittsburg. The new steol is harder and finer in texture, and will wear better than any previously in use. It is of great value in cutting up the hard jasper-quartz and flint rocks that are met with in working the veius of ore in the mines.

We expected to see openings and galleries at the mines at Marquetto similar to those in Pennsylvania, and were mucis surprised to find that the ore lay in such huge veins and outcroppings that it could be taken out as querifmen take out sandstone or slate from the quarries in the East. The mines preaent the appearance of a large pit of 100 to 200 feet in depth, and of a circumference nearly equal to that of half an acre. At different points the veins are worked at an angle of 45 degrees from the bottom level, and the vein thoroughly explored from the surface of the pit to the buttom. The veins vary in size from three feet in width to 100 feet or more. At the Republic Mine we baw the miners workiug at the side of a hill that seemed to contain nothing but solid, pure ore, and the ore was taken out as fast as the pirks could biling it to tha ground. Three men's work at this mine represented for one day 20 tons of ore, dug, broken, and carted away to the stockpiles near the rallroad track. The Republic Mine was opened last October, and has alreally produced 90,000 toas of ore. The unmined ore is believed to amount to millions of tons. The owners were offered for the property, before a pick was used in exploring it, $2,000,000$ dols. by some iron manuf teturers of Cleveland and Pitstbur,h. In the richness of the veins, their extent, and the case with which the ore is taken from the hills, the Republic Mine is a sight worth seeing. John Stewart, sloses Taylor, and other New York capitalists are largely interested in the iron property of this district.

The mines are surface mines generally, and are worked from the su a; hut one or two nines are underground mines, of which tho Champion is the best example. Hero they take out the ore in drifts and breasts on cifferent levels, leaving from 30 to 30 feet of substance between the levels. The ore is raiced in shipe thrcugh the shafte, the hoisting-cab'e for all of which is driven by the same engine. This mine is worked upon the same principle as that commonly followed in the coal mines of Penncylvania.

The veins of ore run usually from east to west, and the mines are situated from five miles to sixty miles back from the town. The ore is brought to the decks on the railroad track in cars especially adapted for the purpose, that run out on a wooden tramway 50 feet ahove water-mark, when the ore is dumped into wroden pockets made expressly for loading the vessels and for storiog in readiness for ships' delivery. One wooden pocket holds about 60 tons of ore; the Cleveland Iron Company's docks, this year, with ther improvements, will boid full $s, 000$ tons of ore in pocket at once, and will allow six vessels to load at the eame time. The railroad company also owno docks of a!most equal capacity, the cost of which was some 400,000 dols. The railroad is making large returns of earnings from tariff on trinsportation of the ores, and from time to tine it builds, at its own expence, side-tracks ten miles in length to the new manes, for farther development and speedy delivery.
The iron ore of Lake Soperior costs about six dols a ton to mino and deliver at the lake ports; it is sold at 12 dols. to 124 dols. per ton delivered at the ports; the profit is, theref re, equal to six dols. per ton net. This business pays better than gold or silver mining, and is adding millions to the already great wealth of some of the residents of Marquetto.

It is impossible, of course, to predict the prosperity of Marquette ten years hence, or of the magnitude of this iron mining that is even n,w in its infancy. One ruitway now serves for communication between Chicago a d this place. Still two additional roads are in process of construction frem Detroit to Mackinaw, and hence to Marquete; the State has appropriated lands, and the telegraph poles are already in position fo. the distance of 50 miles. Marquette seems to bave a great fature near at hand. The following shows the prodaction of ore of some of the largest mines during the 5: Br 1372 :-Lake Superior, 185,070 tons; Cleveland, 152,607 tons; Jackson,

118,842 tons; New York, 68,950 tons Champion 68,405 tons, Washington, 38,841 tons; Barnum, 38,381 tons; Cascnde, 35,069 tons; Lako Angelide, 35,221 tons.

AMERICAN LIGHTHOUSES.

A short time since (vide page 203 of our last number), we illustrated two types of recent American lighthouses, and we now give on pages 230 and 231 views of two others, both ccnnected with the lighting of the great lakes. The first of these, namely, that erected on the shores of Lake Erie at (leveland, Ohio, requires no special description; but we illustrate it merely on account of its architectural features. The other lighthouse, namely, that at Spectacle Reef, Lake Huron, is of special interest on account of the mode adopted in establishing the foundations. We are indebted to the last rectived report of the Lighthouse Board of the United States for the following interesting account of the operations:
At the date of the lest annual report (July 1, 1871), the crib 92 ft . square, with a central opening of 48 ft . square to rective the cofferdam which was to form the pier of protection, as well as a landing place for materisls during the buildiny of the lighthouse, was in courso of construction at Scammon's Harbour. The original intention was to put the crib in po-ition in four sections, but upon further consideration it was decided to attempt placing it as a whole upon the reef, which was successfully accomplished, as is detailed hereafter.
In order to get accurate soundiugs to guidr in shaping the bottom of the crib, and to fix with a degreo of certanty the position of these soundings and that to be occupied by the crib, the following method was pursued: Four temporary cribs, each 15 ft . by 25 ft , of round timber, were placed in from 8 ft . to 10 ft of water, in a line corresponding with the proposed eastern face of the pier of protection, and filled to the level of the water with ballast stone. These four cribs were then decked over and connerted together. Upon the pier thus formed about seventy cords of ballast stone were placed ready at the proper time to be thrown into the crib forming the pier of protection. The lower two complete courses of the pier of protection, having been fastened togeth r by screw bolts, forming a raft, constituting a ground plan of the pier of pritection, were then towed from the harbour where they were framed to the reef, and moored directly over the po tioun to be occupied by the finished pier. Its position was marked upon the temporary pier referred to above, and soundings taken at intervels of 2 ft . along each timber in the raft, thus obtaining arcurate contours of the surtace of the red within the limits of these timbers. The raft was then towed back to the harbour, hauled out upon ways, and by means of wedges of timber the bottom was made to conform to the surface of the reef. The raft, now become the bottom of the pier of protection, was then launched, and additional courses of timber built upun it, until its draught of water was just sufficient to permit its being Goated into position on the retf, at which time it was estrmated that the top of the pier would be 1 ft . out of water.
The depth of water on the reef at the points to be occupied by the four corners of the pier of protection was found to be as follows: At north-east corner, 10 ft .6 in .; at north-west corner, 13 ft .; at south-west corner, $14 \mathrm{ft}$.6 in .; and at southeast corner, 9 ft .6 in ; the position to be occupied by the pler of protection haviag been so chosen that the sides would correspond :o the carcinal points of the compass. Mcan white five barges at the harbour had becn loaded with ballast stone, making togeiher with those on the temporary pier at the beef, 290 cords (abr ut 1800 tons) at command, with which to load the pier of pretection and secure it to the reef as soon as at should be placea in position.
On the evening of the 18 th of July, 1 ' 1 , everything being in readiness, and the wind, which hi jeen blowing freshly from the north west for three days previously, having sumawhat moderated, at $8 \mathrm{p} . \mathrm{m}$. the tags Champion (sercw prope iller) and Magnet (side wheel) took hold of the mameuse ciib and started to tow it to the reef 15 miles distant, fulluwed by the Warrington (ecres propeller), baving in tow the schouner Belle (the two having on board a working force of $140 \mathrm{~m} / \mathrm{n}$), the tug Stranger (scres propeller) with barges Ritchio and Emerald, and tho tug Hand with two scows of the Lighthuuse Establishment. The barge Table Rock, with fifty cords of stone on board, was left in reserve at the harbour. The con.

