hood made a socket of two inches in diameter at one end, and three-quarters of an inch at the other. The large end was mado to receive the wooden boring rod, wad the smaller was formed to receive the iron auger shank. Our Yanke preferred a wooden rod (nenty of the same size of the hole to be bored) to a smaller iron one, as its size fitting the hole nade by the auger, kept the nuger itsolf in a moro directly straight line when in use. At the upper end the cross bar or handle to turn this wooden boring bar with was somevrhat enlarged, to aflord extra strength and precaution agaiust splitting. Four tressels, two for the log and two for the auger to work in, were neat made, and a moveahle upright pioce went perpendicularly through the two tressols, with a half moon cut at the top of each to support the auger rods. A wealge at the side enabled the operator to raiso or depress these upright pieces, so ay the auger rod, when resting in the semi.circular hole cat to receive it, would cause the anger to "look" aractly into the centre of the pith in the log. A string or line at the top, and another at the side, attached to the farther and of the log, enabled the operator to see (when holding the string parallel to the log) that the auger and rod pointed straight to the other cnd, so that the augor would be sure to make its cexit in the rear in the pith, as it entered on the front. This was all that was done, and after securing the log with a chain to the tressel, the engineer began to bore away. The auger was good, and the screw part long, and every day sav sixty or eighty feet bored. It was astonishing how fast it was done; but it all depended on the peculiarity of the auger as adapted to its work, and the order in which it was kept This anger would casily bore a foot a minute, and would have done five times the quantity of work if the log could have been set up on an end, and the chips allowed to run out, instead of having to draw it back so continuously to empty it. In some cases, and with some description of logs, we were obliged to turn ends with them, and thus bore half way from each end, and meet in the centre; but generally if the pith was well defined and the log clear of knots, we had but littlo dife ficulty of that kind to contend with.

After the logs were all finished boring came the jointing and banding. Our American frieud procured a quantity of 3 -inch hoop iron, somewhat thicker (but not much) than that ordinarily used, and cut it into lengtha of about 14 inches. The blacksmith wolded these into rings, and at the sane time berelled abont half au inch of each side of the ring thus formed, until it had a momeWhat sharp edge, learing the centre of the band or ring all round much thicker. When jointing the logs, one of these rings was taken and driven against the end of the $\log _{\text {, }}$ with the hole or bore of the log exactly in the centre of the ring. A chisel was then driven in about one inch deep all around the mark thue made in both ends of the log, and
one ring was driven half way into one end of each log, and allowed to remain there. Whon the logs were placed in the drain dug to rocaire them, they were raisod or depreased nntil each ring fitted or "looked" into the marka mule by the chisel for its recention, then a few blows with a heary mallet drove up tho log last laid down until the joint betireen them was closed up almost tight, tho gharponed edge of each ring having boou driven into the end of the log. This formed a perfectly tight joint. and at the same time effectually banded each end of each log, and proventod splitting by the pressure of the column of water.

We next came to the levelling and digging the trench. 1 was anxions to placo my loge below all frost influanee, but my lankee friend decided that the expense would be donbled and the benefits doubtful, as he said the water was spring water and always muning-never under any possible contingency stopped-so that one fool under the surface for the top of the \log, was, he thought, sufficient. To this I agreed, and we soon had the trench dug. We wormed about somewhat to mise stumps, but by staking out the ground first it is astonishing how few direct line trees were altogether in the way. At the fountain-heal I put in a box about three feet square and three feet deep, and the \log was entered about half way up; but a contrivance was "arde whercby the water was always at the top of the box, and the $\log 18$ inches under the surface of the water. This afforded a supply for cattle, easily got at, and at the same time a reservoir to protect the month of the log fromfrost. At large pise trough received the outlet water, which was compelled to rise about two feet before overf owing into the cattle trough. The log was continued underground to the site selected for the dairy, and the end plusged up, to be opened when wanted.
The whole was well done, and at a reason. able expense. If I remember right, and from calculations I have many times gone into when questioned by partios wishing to perform a similar work, the cost out of pocker was about 62 cents a foot. It could not be done for that now, I suppose, as the timb e cost me nothing and labour was cheap; but we did it at odd times when work was not pressing, especially boring the logs. Wet, stormy lays were always appropriated to this work.
C.

Beet Root Sugar.

"Vectis" having written to the editor of The Sugar Cane an account of all the diffi. culties he has met with in his pursuit of this subject, aud requestod iuformation, particularly such as should ensure the proper crystallization of the sugar, has received the following reply. The Sug'r Cane is a modern English publication, purely deroted to the subject of cane and beet root sugar, both crude and refined. Its circulation is cliofly amongst
professionals in tho trade, and it is therefore the best authority that can be given.
The following is the reply in question :London, 17 the Jume, 1571.
(To the Editor of the Sugar Cane.)
Sir,-I would recommond your corres pondent "Vcetis" to try the following (pre mising that he will work on a small scale', and I think he will cind no diffeulty in ery:tallizing tho beet juice, provided it is not too weak. He should grow beets weighing not more than from 2 to 231 be . each.
lst. Heat the expressed juee to about 108° Fahrenheit, and then add cream of hme of the density and proportion mentioned in "Crookes," page 79. (These particulars have been given in the Casada Fabiar-Ed.) Stir it in, and contmue heating until very near the boiling point ; then remove it from the fire for a few nimutos, and again replace it, and increase the heat until the first gigns of boiling appear; now remove it from the fire, and filter through a cloth until it runs bright.
2nd. Insufflate (or blow into-ED.) all the filtered juice with carbonic acid, until it is no longer allaline to red litmus paper; allow the carbonate of lime to subside, aid pour off the juice into another vessel : boll for a few minutes to throw down in the form of "mono carbonite," the bicarbonate of lime held in solution, and again filter through a cloth until it runs quite bricht.
; 3 rd. Rum the filtered juice through animal chareoal, using the latter in a gramulated form, about twelve per cent. of the weight of juice employed.
4th. Concentrate the filtored juice to 30° Baume, about 1.245 specific gravily; then, if not transparent, filter through a cloth until it cuns bright, and, while hot, pass it through another portion of animal charcoal, using about half as much again as on the first occasion. (See note.)

5th. Coucentrate the filtered and now colourless syrup to a density of 42^{2}, Baume, S. G., 1381. This density should not lo passed, and almost before it is cold it will he found to orystallize.

Your obedient servant,
E. 1 .

Nore.-If the animal charcoal is new, i.e., freshly bumed, it should be previously washed with boiling water, to remove the sulphides, and dried.
The foregoing is an exact copy of the commumication, and I hesitate to alter it, even to make it more easily understood. The editor of The Sugar Cune has also most kindly given a translation from "Walkhoff," who is belived to be the best and most particular writor on the subject of beet root sugar, and Walkhoffs opinion bears out that of "E.B.," so that the plan recommended for the small a ala may be unhesitatingly adopted.

The only difficulty with farmers and people who have not received a scientific educaion, is the strength given by "Baume," and the "specific gravities." To meet this trouble I recommend the following plan:
The ordinary Cmadian pint (wino measure), such as is stamped by the inspectors of weights and measures, when cxactly filled with ordinary cold spring water, weighs a trifle nader one pound and half on ounce. The same pint measure, filled with syrup, will weigh as much more, as the difference which exists in the density or thickness of

