
We will now apply Equation (2) to a study of the 
entire mass of water, both in the vessel and in the issuing 
jet. The re-entrant mouthpiece being of the greatest 
length which permits the jet to spring clear and not adhere 
to the sides, the velocity of approach near the points c 
and d is negligible and the pressure at those points may 
therefore be taken as hydro-static. The pressure on all 
sides of the entire mass of water is therefore balanced with 
the single exception of that area equal to and opposite the 
opening A B. If this area be designated by “F” and “h” 
be the head of water on the centre of the area under con
sideration, then the nçt unbalanced pressure or force is 
Fhy, which becomes our “P” in equation (2). This force 
does not operate to impart a small increment of velocity to 
the total mass, M, during each unit of time, dt, but in
stead is continually imparting the velocity v, given by 
equation (3), to a small mass dM which issues from the 
vessel during each unit of time, dt. Therefore we write 

dM
= Fhydt
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If “c” is the coefficient of contraction 0 = cFv and we 
have

gbut dt dt
QvyHence (4)g

cFv* y
- Fhy

and replacing by 2 gh, we obtain the equation 
c = 0.50

That is, we have shown that the coefficient of contrac
tion can be theoretically determined and explained by a 
general application of Newton’s second law of motion to 
the problem involved.

The foregoing theoretical determination of the co
efficient of contraction for a re-entrant mouth piece is 
given by a number of writers but so far as known, the 
following theoretical determination of the coefficient of 
contraction for a thin-edged orifice in the vertical side of 
a large vessel or tank is new.

In this case, shown in Fig. 2, the velocity near the 
points A and B is not negligible. It is specified that the 
orifice is small compared with the dimensions of the tank

• (5)g

a re-entrant mouthpiece, such as shown in Fig. 1. The 
vessel is considered to be very large compared with the 
mouthpiece, or orifice. We will first apply Equation (2) 
to the study of the motion of a definite element of the 
mass M, which is a prism of a stream line as indicated in

F dsythe figure. It is readily seen that M =

and P = Force in direction of motion = — Fdp. This 
force operates to impart a small increment of velocity to 
the total mass under consideration, during each unit of 
time dt, and we therefore write—

g
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• (3)v = V 2 gh

APPLICATION OF NEWTON’S SECOND LAW OF 
MOTION TO CERTAIN HYDRAULIC 

PROBLEMS.”

By Ford Kurtz,
Engineer with The J. G. White Engineering Corporation.

HE object of this paper is to discuss two phases of 
the application of Newton’s second law of motion 
to hydraulic problems, the bearing of which is 
seldom clearly presented in textbooks on the sub

ject. In order to do this it is necessary first to study that 
law in its most general form. The following statement of 
it, taken from Watson’s “Physics,” is a direct translation 
from Newton’s works. “Change of motion is proportional 
to the impressed force and takes place in the direction of 
the straight line in which the force acts.” As pointed out 
by Watson, the word “motion” as used by Newton was 
intended to convey the meaning “quantity of motion” or, 
as we speak of it, “momentum,” i.e., mass times velocity ; 
also that the word “change” as used by Newton was in
tended to convey the meaning “rate of change.” From 
the law as so interpreted, we may write at once its general 
differential equation form :

d (Mv) .
dt P’ uedt 

and by general agreement as to choice of units, the value 
of the constant “k” has been taken as unity.

T

[d Mv) = kP (1)

NOMENCLATURE.
d = symbol for differential 

quantity.
Q = rate of flow of liquid in 

units of volume per
unit of time =

dt
c = coefficient of contrac

tion.
r = radius of circular orifice.

<p = coefficient of velocity, or 
friction for an orifice.

a = acceleration = ----.
dt

x = a rise in free water
face measured in units 
of length.

I — a length.
C - velocity of a wave front, 

or “bore.”
I = inside measurement of 

the width of 
flume.

M = mass.
v — velocity.
t — time.
P = force.
k = a constant.
F = an area.

.r = distance.
y = heaviness of liquid, or

weight per unit of
volume.

g = acceleration due to grav
ity.

p = pressure on unit area, 
ÿa = atmospheric pressure on 

unit area.
h = a depth of water meas-

sured in units of
length.

V = volume.

sur-

an open

Equation (1) therefore becomes on expanding the left- 
hand member and putting k = 1, 

dM 
v ~7t

The first phase of the application of this differential equa
tion to problems in hydraulics mentioned at the beginning

of this paper involves the interpretation of the term v
dt

Evidently it represents that momentum which is produced 
during each unit of time, dt, by imparting the finite 
velocity, v, to a small (differential) mass, dM ; while the

with which we are all so familiar in the

dv
+ M —T- = P . (2)dt

dM

dvterm M
dt ’

mechanics of solids, represents that momentum which is 
produced during each unit of time, dt, by imparting the 
small (differential) velocity, dv, to the finite mass, M.

In order to show clearly the application of Equation 
(2) to a given problem, we will consider the discharge from
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