limit himbelf to asking questions that tund to bring out tho meaning of theo auther, without asking the candidate to account for "the order of the particulars," or for "dramatic touches."
In the papers on French and Latin, Grammar and Composition, about 75 per cent. of the marks is given for Prose Composition. I think that at least 50 per cont. of the maths should be allotted to the questions upon Grammar.

Thero is not enough diffarence in point of difficulty between the papers for Third and Second Class Candidates. This is especially true of the papers in English Grammar, Prose Literature and Drawing.
I would suggest a frequent change of Examiners in all subjects, as tending to cure many of the evils complained of.
(To be continued.)

Examination Questioms.

As Mr. Glashan's Algebra paper has had much attention and is severely criticised by some of our correspondonts, we publish it below together with an explanatory note, and Mr. Glushan's Solutious, as given to the public by Professor Young, through the columns of the Eilucational Wrekly.

THE SECOND CLASS ALGEBRA PAPER.

To the Eilitor of the Eutcatmanal Wexhit.
Sik,-As the Second Class Algebre Paper at the recent examination of teachers has proroked a good deal of comment, it may interest your 1 eaders to see Mr. Glashan's solutions of the questions, with some notes which he has added.

The paper has been called "cranky." Nothin's can be more absolutely opposed to the truth than such a statement. The ninth question is an exercise, in which thero is nothing peculiar, in the formation of equations; the others, without exception, are applications of the broadest principles of Elementary Algebra.

When the paper was handed in to me as Chairiran of the Central Committee, it did not strike me as being too difficult. Nor do I yet think it too difficult for Second Class teachers, prepared as ther ought to be. But I admit that I was wrong in supposing that it was suitable for the candidates coning up for examination. It has, in fact, been found to be above the mark of the great majority of them. I need not say how much I regret this error of judgment on my part; and I shall do what I now caus to prevent any candidate from being injuriously affected thereby. I am, sir, your obedient serrant,

Gronge Paxton Young.
Toronto, 21st July, 1886.
MIDSUMIMER EXAMINATIONS, 1886.
SECOND CLASS TEACHERS

ALGEBRA.

Examiner.-J. C. Glasharn

1. Divide $x^{x}+1$ by $x^{x^{\pi-1}}+1$.
2. Simplify $1+\frac{z}{x+y-z}+\frac{y}{z+x-y}+-\frac{x}{y+z-5}$.
3. Resolve into linear factors :
(a) $a(b+c)\left(b^{2}+c^{2}-a^{2}\right)+b(c+a)\left(c^{2}+a^{2}-b^{2}\right)+c(a+b)\left(a^{2}+b^{2}-c^{2}\right)$.
(b) $\left(a^{4}-b^{5} c^{2}+\left(b^{3}-c^{4}\right) a^{3}+\left(c^{2}-a^{d}\right) b^{2}\right.$.
4. If $\frac{2 x-y}{2 a+b}=\frac{2 y-z}{2 \bar{b}+c}=\frac{2 z-x}{2 c+a}$
show that $\frac{x+2 y+3:}{x+y+z}=\frac{41 a+33 i+47 c}{21(a+b c+)}$
5. Prove that if $r^{s}-q x+r$ have a squars factor then will
6. Solre the simultancous equations
$\frac{2 x+3 y-4=}{x+5}=\frac{3 x+4 y-2 z}{0 x}=\frac{4 r+2 y-3 z}{4 x-1}=\frac{x+y-z}{6}$
7. Solve $\left\{\begin{array}{l}x^{3}-x y=11 x+4, \\ x y-1 y^{3}=11 y-8 .\end{array}\right.$
8. Eliminate x, y and $=$ from the equations
$x==a(x-y), \begin{aligned} & \frac{1}{x}-\frac{1}{2}=b\left(\frac{1}{x}-\frac{1}{y}\right) x^{2}==y^{4} .\end{aligned}$
9. A walking along a road passes B, but finding ho has lost something turns back and moets B two hours after he passod him. Having found what he lost ho overtaked B again three hours after ho met him, and arrives at his destination ono hour later than he would have done had he not turnod back. Cumpire the rates of walking of A and B, assumiug them to have been uniform throughout the whole time.

solutions.

BY MH. J. C. GLASHAN.

1. $\left\{\left(x^{3^{n-1}}\right)^{3}+1\right\}-\left(x^{n-1}+1\right)$

$$
\begin{aligned}
& =\binom{3^{n-1}}{x}^{-s^{n-1}}+1 \\
& =3^{n-1} \times 2-3^{-1}+1 .-A N S
\end{aligned}
$$

2. The expression vanishes if $x=0, \therefore x$ is a factor of the numerator.

Tho Expn, is symmetrical with respect to $x, y, z, \therefore y$ and z are also factors of the numerator.
The numerator is of tho third degree, \therefore there are no other literal factors of it. \therefore Expn $=m x y z \mid(y+\dot{z}-x)(z+x-y)(x+y-z)$.
To determine m, let $x=y \doteq z=1, \therefore 1+1+1+1=m$. $\quad \therefore m=4$.
\therefore Expn. $=4 x$ y z I $(y+z=x)(z+x-y)(x+y-z)$.-Ans.
3. (a) The Espn. vanishes if $x=0 . \quad \therefore a$ is a factor of $i t$.

The Expn. is symmetrical with respect to $a, b, c, \therefore b$ and c are also factors of it.
The Expn. is of the fourth degree, \therefore it must have a fourth linear factor.

This factor must be symmetrical with respoct to a, b, c, \therefore it must be $a+b+c \quad \therefore$ Expn. $=$ mabc $(a+b+c)$.
To determine m let $a=b=c=1$. $\quad \therefore 2+2+2=m$. $\quad \therefore 2 m=2$. \therefore Expu. $=2 a b c(a+b+c)$-Ass.
(b) The Expn. vanishes if $a^{2}=b^{2}, \ldots a^{2}-b^{2}$ is a factor of it.

The Expn. is symmetrical with respoct to $a^{2}, b^{2}, c^{2}, \therefore a^{2}-b^{3}, b^{2}-$ $c^{2}, c^{2}-a^{2}$ aro facturs of it.
The Expn. is of the sixth degree, \therefore it has no other literal factors. $\quad \therefore$ Expn. $=m\left(a^{3}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)$.

To determine m lot $a=0, b=1, c={ }^{2}, \therefore-4+16=12 m, \therefore m=1$.
\therefore Expn. $=(a-b)(b-c)(c-a)(a+b)(b+c)(c+a)$-ANs.
4. Let each fraction $=m$,

$\therefore \frac{D+2 E+3}{D+E+F} ; \frac{x+2 y+3 z}{x+y+z}=\frac{41 a+38 b+47 c),}{21(a+b+c} \quad$ Ans.
6. Lot $(x-a)^{2}$ be the factor, then, by division,

\therefore if $(x-a)^{2}$ bo a factor of $x-y x+r$,
$a^{3}-q a+r=0$, and $\overline{5} a^{4}-q=0$, $\therefore a^{2}=8 \%$.
$\therefore \frac{z}{\delta} q a-q a+r=a_{1}$
$\therefore a=\frac{5 r}{4 q}$,
$\cdot\left(\frac{5}{4 Q}\right)^{4}=1 q_{1} \cdot \therefore\left(\frac{\pi}{4}\right)^{8}=\left(\frac{q}{5}\right)^{8}-$ Ass.

