running 19 ounces per ton the sands will run 22

ounces and the slimes 18 ounces per ton.

The tails from 6 Wilfley sand tables, which will run 5 ounces, are re-ground in one 5 x 20 tube mill and retreated on 5 Deister tables. The tails from four sand tables treating the finer sands are retreated on old style Deister slimers. The tails from the 4 vanners are retreated on No. 3 Improved Deister slimers. The total tailings from the Deister floor pass over 28 canvas sheets before going to waste. Over the canvas tables the pulp is allowed to flow for about one hour, when the top is washed off and elevated to a Deister table, where it is cleaned. The underlying mineral is then washed off and settled.

The final tailings from a mill feed of 43 ounces will average 4.1 ounces, ratio of concentration 20-1, thus

FEED			PRODUCT.			
	Mesh	%		Mesh.	%	
On	8	.70	On	40	1.3	
	10	2.10		60	12.	
	20	34.		80	27.	
	40	34.70		100	17.1	
	60	14.		120	4.	
	80	11.10		150	2.6	
Thro	ugh 80	3.40		200	22.0	
			Throu	igh 200	14.0	

Mill, 8-foot Hardinge Conical. H.P used, 50. Speed, 27 R.P.M. Tons of ore treated per 24 hours, 48. Water used, 70 per cent. It should be mentioned that this 50 h.p. includes motor inefficiency.

EXTRACTION	AND	GRADE	OF	PRODUCT.

Unit	Feed Assay. ounces.	Tail Assay.	• % of Extraction	Gra	de of product. Assay per ton.
Hand picking	. 43	41.4	.35	1500	
Coarse jigs		19.	51.30	1200	Bed skimmed (smaltite).
Fine jig		18.	55.	1450	Jigging through screen bed of.
Wilfley sand tables	. 23	5.	78.30	975	Treating sizes 8-40 mesh.
Deister sand tables	. 21	6.	71.50	1150	Treating sizes 40-120 mesh.
Vanners	. 19	9.	52.20	500	Treating sizes 120-slime.
Deister Slimers	. 9	5.5	40.	250	Retreating vanner tails.
Canvas Sheets	. 4.5	4.	13.	200	Tailings from Deister tables.

.031

showing an extraction of 90.55 per cent. The sand in tailings will run 2 to $2\frac{1}{2}$ ounces and the slimes 5 to 7 ounces.

C	0	8	T	8	
~	-	~	-	~	3

verage costs will run:	Per ton of	Per ounce
	ore milled.	Recovered.
Concentrating	670	.007
Power		.008
Power plant repairs		
Mill repairs	326	.016

1.303

Fine grinding in tube mills. Mill—5-foot x 20-foot tube mill. Horse-power used, 55. Speed, 19 r.p.m. Tons of ore treated per 24 hours, 60. Water used, 60 per cent.

	FEED.		PRODUCT.		
	Mesh	%		Mesh.	%
On	8	58.	On	40	1.
	10	10.		60	4.
	20	20.8		80	13.
	40	1.6		100	13.
	60	.8		120	4.
Through 60 .8			150	17.	
				200	36.
			Through	gh 200	12.

Improvements.

At present a hand picking section is being installed to increase the quantity of high grade, and reduce the values going to the stamps, also to get a better screening efficiency and reduce the quantity of fine material going to the stamps. This is illustrated on flow sheet.

OUR EUROPEAN LETTER

Electricity in British Mines — Government report on the Hulton Explosion and earlier reports — Interesting new electrical winding plant in Durham — South African mines still out in favour with the investor despite continuous growth of gold output — Substantial interest evidenced in the Giesecke ball mill — What it may do on the Rand — Oil market dull — Slow petroleum developments in Russia — Falling production in Galicia — Reasons and results of extraordinary London tin fluctuations —

(Exclusive correspondence of Canadian Mining Journal.)

London, June 21, 1911.

Electricity in mines is one of the questions that is always being debated now and the definite statement

just published in the Government report on the Hulton colliery explosion is particularly interesting and important because of its bearing on the use of electricity in coal mines. The Government inspector says that he is perfectly satisfied that the use of electricity in the mine has no bearing on the disaster. Although this definite opinion is not read as absolving electricity from being a source of risk under any circumstances it will go a long way to reassure working miners and their leaders who have not been at all backward in declaring that the electric switch at the conveyor facewas the initial cause of the explosion.

A Government committee was appointed to look into the whole of this class of operation as far back as 1902 and a second committee in 1909 revised the rules sug-