
tie victoria beidge.
This stupendous work, now so near its completion that it is confidently oxpected to be
ready for public accommodntion in the cusuing ready for puhtic accommodation in the casuing
autunn, will render the Ruilway from the autunn, will render the Ruilway from the
seaboard to the upper lakes, one unbroken line, ono continuous route from Portland to Sarnia. Yes, the long talked of structure is so far adranced, that its being fully completed is only a. question of a few months ! And then, the
noblest brilge of which the world has ever noblest bridge of which the world has ever It is no stretch of boldness to eluim this and-a-hulf' times the length of the Danuhe, one fourth the extent greater than the Mississippi -the Amanon but a few miles exceeding itwhere is there a strenm to lo found with a grenter salubrity than the St. Lawrence? The hakes which form a contimation of it are itlama seas, bearing thousumds of crath of every description, nud of overy variety of buidd ami tonnage. They bid fuir to be the seat of fish-cries-a commeree in themselves. For a thou-
sand miles in this fertile valley now dwells a busy, enerretic population, marked by a bigh civilization, who have pushed up to its very source. The tributaries ure in themselves stcoud only in magnitude to the puremt strean; ;
and on the area tlus drained, harge eities have and on the area thus drained, harge eities have
isen up, ench year increvsing in opulence and magnitule, white the watters which How hy want. It secms imbed but a moetical corollary that where nature to the west has formed that narvellous wonder, the Falls of Siagara, men

its misturs.

It will not be out of phace to say a tew words apon the circunstances and period when this
den first became a recognised necessity in the public mind.
In exnmining into this part of the subiject, it is necessary to go back some twelve years, when an effort was made to commence the SL.
Lawrence and Alluntic Railway. Asone turns to those days, it scems that the Province has adranced a century. At that poriod the Railway frow Laprairic to St. Johus--which was
worked only during the summer months, and Worked only during the summer months, and
that at the rate of twelve miles per hour-and that at the rate of twelve miles per hour-and
the six miles of Railway to Lachine, formed the the six miles ofRailway to Lac
whole of our Railway system.
In those days travelling was considered an efook ;ix days to pass from Toronto to Montreal, and really one travelled at the risk of life, and the trade which, before the days of Railmays, had turned by the Ottawa and St. Lawrenec to Montreal, passed through the State of Ners York
to the commercial capital of the Union. In this position of umars the mercantile community of Montreal projected the St. Lawrence aud Atlantic Railwny. We are not writing a lisisiory of that work, but were wc doing so, it
would be one record of dificulties and trials; would be one record of diniculties and trials; of hones which indeed were only conquered by invincible determimation and uncensing eneray. The line, however, was completed; and allhongl mhen comucned, it was felt hata a connection
hetween Slontreal and the Ocemn was the thing Letween Montreal and the ocemn was the thing
it was seen, ilat in reality it only formed the frest link in the chain of Railways; for in winter the were as remote and as unconnected
with the West ingly worked itself to the naturul conclusion and it wassengnized that eren were the preseat Grand Trumk Ruilway in existence, the line
would only imifferently supyly the compercial requirements for its construction, if the St. requircments for ins construction, is the St
Lawrence divided it into two parts. Thenarose
the question, can the st. the question, can the st. Lawrence be bridged? And here it is. gur phequing, us we helieve it to
he our imperafive, du's to inform the reader
 Sontrent, the hovorante: Sons Yorsa, belongs
the merit of having first recognized, agitned, nad urged the commercialnecessity of this work The first formal prepuration to carry out such
a seheme appeareal in a Montreal news called the Econemist, amblister in $18: 46$, and the particular article refering to our subjec appared on the zith June in the same year.
Tman antera was warres by the Hos. Jons Yorste, num the immediate result was the formation of a Conunittee to enquire into the fensibility of the undertaking, of which Committee Mr. Yeesc was Charman, who employ ed Mr. Gay, an eminent enginecr of Pensylvania, to survey and report on its teasibility
That gentloman located the bridge in his Thant gentlemun located the Bridge in hi
plan across Suris liland. In the same year Man across Sur's shand. In the same year
Mr. A. C. Morton, the then enginer of the st lawrence amd Athantie hatimay Company,
also surveyed anl laid down several lines of ansourreyed and hidd down several lines of below Sun's Jslam. Althongh the enulures theing practicibure, to erect the bridge, the question-owing. chiefly to a succession of
yeurs of Conumercial depression-did not take a sufficiently firm holl of the public mime till the year issi, when Mr. Yorsc:'s watch-
fulness again shewed itselt by the introduction fulness again shewed itself by the introduction
into the instructions to Mr. Thomas C. Keefer inte the instruetions to Mr. Thomats C . Keefer
(who was charred with the surrey of he Montreal and Kiagston Railroad). Finatly i fimancial administration of Tsirfector Gexpras Hiscks, (now Gorernor General of the Windward Islands), the Victoria bridge was included in the government policy for the construction of the Grand Trunk Railway. At this eventfil
period Mr. Yorxr's labours began rapidy to fructify, and now the great iden of his practical brain had ussumed a form and fixedness with which his name will cever be associated, and which will mark his charncter for intellect and energe, not only in his own time and that
his children, lmet in the far distant future. To Alex. M. Ross, Esqq., tho Chief Euginee ception of the design Company, is the the conmagnificent work.
Next we have to introduce the name of Mr. part of the Contractors, Messrs. Perto. Brasser \& Betts-under whose management the work have been prosecuted with such great energ. and ability. The whole period, whicl on com pletion or the work win have been devoted 10 it, will be six years. Commencing in 1854 it
will be hinisthed in lsas; but undoubthly its progress has been impeded by the monetay
crisis, which have aficted the anfars of the Company, for it might have lien fully wo
years carlier completent. Thus the amount of
victoria bridge.
work performed in 1836 tras equal to that er fected in 185.4 and 1855 . In 1857, but a ver the previous year, whereas, in 1858, as much When wo done as in the two preceding years. s7,000,000, we give only a faint illen of the esponsibility of directingso great a work. The was sunall army. It consists of six steamboats, seventy-t wo barges, besides several small craft
 They were manued lyy
Int the two stome quarr

To this strength must be nddell 142 horses, variously employed, and 4 locomoti
amount of wages being daily $\geqslant 5,000$.
The whote of this forec was handted by the assistants of Mr. Hoderes, of whom he was himself the motive power, hying down the laws
which they were to be governed, and creat ing when they were to be governed, and ereat-
ing the dishine by which they were to be guided with admirable shill and manarenent mal whije denling with the amomint of hator,
will not be numiss to set arainst it the amount of materin!. In rommd figures there will be $3,000,000$ culic feet of masonry, 10,000 tons or iron in the tubes; $3,000,000$ rivets, ench one fastened ty a peenliar process, and 168 acres of minting. The tubes being painted four times in oil and colur, and cach cont giving 32 acres
These tigures convey some iden of the furethought and practien combination which are necessary to carry ont a design profitubly to a
contract.
There lave been trying times during the lat
There have been trying times during the las
five years, as any one may readily concevive and Mr. Honess may unt have spared others indeed it was no Wosere there was dificulty and danger-there he was to be found, and no man has been asked to go, where he would not have fullowed.
We do not say that Mr. Honers is the ouly one connected with the Bridge, who has his cominnected with it have had their anxicties; but he has played no insignificant part in its progress, and should equally participate in the common triumph. We must not omit to state that during the last six jears the water has been carefully marked in its daily height and temperatik. The all matical phenomean hare been carefully observed. It is premature to speak of this part of the sulject; but, from the observations made, there is a fuir inference that there is a governing lave in the matter of the rise and fall of the river. At least, the phenomena would so indicate ; but they require a specin! and careful
the sulject.
the bridge-descriptios
The Bridge contains 25 openings of 242 f ., with the exception of the en tube is 6,600 a approached by enlankine:ts, the Montreal cud being $1,200 \mathrm{ft}$, the southern shore of $\mathbf{s 0 0} \mathrm{ft}$. which, including the abutuents, makes a total

cells of 24 fl, with intervening tie-walls of: the length of a tube, 242 ft ., in lengeth, and indeed are carried up to the same height, the cells being filled with gravel. To resist the thrust of the iee, both the abutments and piers are furmishect with a cutwater, which meets the whole height of the abutment being 36 fic nhove summer water, the eentre pere being 60 fl. ; hence the Bridge rises in a grate of 1 in . 132, or 40 ft. to the mile, the centre again being wide thect: The Centre pher ithet feet in width, the remaining piers are hut 1 fft. These
dimensions are directly under the dimensions are directly under the girder, for at
the foumdation the piers are 22 ft . in width and at summer water ig f . Transrersely the piers are 33 ft . under the girder. Thus the dimen-
sions at the junction with cutwater is 16×33 ft., extending outwards to the foumdation up
stream nukes theares of the course whence stream makes thearea of the course whence the cutwater is commencel 16
fomuntions vary. low down as 23 ft , lelow lhe water, amit to obstain good and perfect foundations was a work of very grat difticulty. Indeed here lay the lility could be obtained for the structure, so that all ordinary disturbing causes would be of immediate danger to be met. But that in Canadian Engiucering was alrendy a fuit uccompli Indecdit is a matter of wonder how "ice-breakers " do protect the slightest strueture, if the whole be properly calculated; as, on the other hand, compact massers of masonry fail to with
stand even limited pressures of ion if the camtion of turniug the ice back on itself he omitted. For the effect of the ie-birenker may be so described, in itself being a simple addition to the pier projecting outwards in an angular form, both sides sloping upwards at an angle of 45^{n}. So dread is felt about withatanding
the ice. There was a rreat denl of dreary nonthe ice. There was n great denl of dreary non-
sense written at the time, below even the sense
neral average merit, of amateur newspaper-writing about frusec ice; and certainly it influenced: for the time, those melancholy minds who seem sent into the worid to presage misfortune ; and as public opinion was much wateled ly those who were connected with the bridge, every
thing of this sort had to be read thing of this sort had to be rend and ponderid
over. For there is a responsibility which tenuls the expericaced engineer to turn a denfenr to no one. What are called suggestions he receives in abundance. Every one deals with him as public property, and writes to him in private, courteously, or through the newspapers, rudely, as
the fit tnkes. But no one who was at all acthe fit thkes. But no one who was nt all nc-
quanted with the peculiarities of the Canadian climnte, and with the success which had been obtained in dealing with those peculiarities, at all feared the influence of the ice. The foundations were, howerer, the sheet anchor in the theory of statistics, as in practice they formed the security of the mass. There was a certain eorce which reqnired to be resisted by a certain
inertia. It had been supposed that the ved of the river was rock, which the scour of the rapid strenm,
had kept clear from all deposit : hut it wals discorered on the contrary to consist of houlthers packed with gravel, nad that materina callou varying from sis to ten feet in deptli. Sor
intervened frequently. All this had to be taken out, so that the bed proper of the river-the datioss hand to be commsunced. This was the
dather crisis of the work ; for, until the masonry mas above water, the parties labored night and day It must be recollected that during this period the current was running past the works at te
and twelve miles an hour ; for, owing to contractions of the water foyy by the coffer dams, the speed of the river was thus accele rated. These dams were of two kinds floating dutms, and the orillnary cofier dams:-

Before, however, entering upon the subjec
if the dams, a few words about the mode of the dams, a few words about the mode o
a laying of the work are necessary. We bave
alluded to the elaborate surrey made on the alluded to the elaborate surrey made on th ice by Mr. Thos. Redidaz, in 1853 , by which the
exact and precise depths of the river were deternined, and on the ma the loce de bridge was made, the usual reference point being preserved, by which the exact site could be obtained on the ground. The working season of 1853 , inmediately preceding the winter sur eey, was passed in preparation ; and it mas in the
winter following 1853-4, that the first were taken to lay of the that the first step on the line already traced during the summer. This work was done on the ice, the distance being carefully measured, and on the contre of the pier beelhg foun, "guides were frame so that a long iron rod could be lifted and le fall in the oue spot, technically called "jum! which a bolt was inserted and driven. I these means, the precise centre of the pier wa established within a few inches : for in all case: on punping out the water from the dams the bolt was found, practically speaking, establis: ing sufficiently the position of the pier. It bas
been said that the danis were of two kinds, each having its advantares and disairantage The floating dans were, in themselves, framed structures of no mean character, and consiste of two parts. One part, whicl for the momen se wh cal hree sides or a square figure-tho sides being lareer than the head-the otbe
piece forming the square. But in order to off the current the beud of the square wie formed of two minor sides turned to an anglo up stream. Ther were carefully and strongi framed; and, being caulked, floated of themselves. To place these dams in the prope position, the piece of three sides was taken ty approximately in position, determined instru mentally from the Bhore, a slnice gate 52 opened, and the water passing within it, it sank at the required place. The tail piece was subsequently towed into position. Necessarily great margin, as to area had to be left, in cas exnct spot. At the foundation, the piers wer 22×90, whereas the cribs were 120 bs 210 , which area was of perfectly still water. Ope ations could accordingly at once be commenc ed. A dam proper was constructed within this workalle water, and on its completion th pumps were set in work. The other form of
dam was the ordinary cribsing of the country and owing to the rapidity of the stream, unusual care amd tact had to be cbierved in its con struction. It was commenced with some pre liminary cribbing, if we may use the word, 20
wite and 100 long: constructed in approximate

