soltrtad まaputs.

On the Laws which Regulate the Division of a Body botween two Solvents.*

आצ MS. HERTHELOT AND JUSGFLYISCH.
It is frequently necessary to extract a body which has been dissolved in a liguid, by stirring into the litter another which does not combine with it, and whose action is, therefore, purely physical. Such means are frequently used for extraction, and ceen estimation, of bodies held in suspension in other liquids.
The action of the following bodics has been studied: Iodino and bromine, in the presence of water and of sulphide of carbon; succinic, malic, tartaric, oxalic, acetic, benzoic, sulphntic, and chlorhydric nexds, in the presence of water and of cther.
All bodies capable of exercising chemical reaction wero carefully excluded from our experiments; and the usual modo of operation was as follows: The body under treatment was dissolved in one liquid, a certain volume of another wrs then added, and the whole received a rizoroms and prolonged stirring, the vessels being kept at one temperature by means of at water bath. The body in solutius was estimated from thme to time, until fixed results were obt. ned, which sometimes required one or two houls, and the amount wiss then estimated in each of tho superincumbent liquids.

The Co-Eficient of Division.-A body simultancously brought in contact with two solvents, in each of which it could be separately dissulved, never dissolves wholly in one to the exclusion of the other. Whatever may be the solubility of the body in question in one of these solvents, and whatever may be the excess of that solvent, the body is always divided between the two solvents.

Quantities dissolved by the same volume of two liquids remain in one constant relation between them. We will call this relation the co-efticient of division; it is independent of the relative volunces of the two solvents, but dependent on concentrationand temperature. The following examples, cited from our numerous experiments, will be sufticient to establish this law:-

Succinic Acid, Water, and Ether ut $1 \overline{0}^{\circ}$.

$\begin{gathered} \text { Fianl volume } \\ \text { of } \\ \text { thu lliguin. } \end{gathered}$			Voluanc or harsta. water situmathis 10cco of thelituit.		Curnicirut of alivisions.
	${ }^{6}$	$30 \cdot 0$	$42 \cdot 41$		
Covernimater	1 49	40.0	$43 \cdot 8$	$7 \cdot 4$	$6 \cdot 0$
mids.	28	55:5	474	7.7	$6 \cdot$
Mone ditate	- 30	$70 \cdot 0$	$18 \cdot 8$	$3 \cdot 4$	5%
Hipulis	\{17	1\% 0	i6.2 ${ }^{+}$	$3 \cdot 0$: $\cdot 4$

The co-efficient of division of at buly between two solvents is analogous to, the co-efficient of division of a gas between a lifuid, which will dissolve it, and an empty spupen pusing syance; but, in the jatter case, it is the tension of gas in the unit of volume of the empty space, which determines the quantity dissolved in the entire volume of higuid. In the case of a body diviued between tro srivents, it is the final quantity dissolved in

[^0]the umit of volume of one of these liquidy, which determines the cunantity dissolved in the unit of the other.
Influence of T'emperdure.- The co-ellicient of division changes with the temperature, but very slowly.

At 15°.	0.060............6:2
	$0.0784 \cdot 9$
" 15°	0.019............5.5
	0.019............. 50

Iufluence of Concentration.- The co-eflicient of division varies with the fimal concentration of the solvents, but not in proportion to the weighta dissolved; its progress is slower.

Experinents with malic, tartaric, and acetic acids demonstrate that the co-eflicient varics more rapidly with the concentration when very soluble bodies are under treatment, than wilh those which are less so. This difference is explicable because concentrated solutions of tartaric or acetic acid dissolve ether in proportion, differing from those cifected by diluted solations.

Sulpharic acid and chlorhydric acols give rise to a remarhatile analugy, ethes wall cissolve then only when they are concenthated. The proportion of acid ubtaincd from thenaquecus sulutions which are slightly dhlutenl, is almust inappreciable.

On a Species of Ipomea, aftoriing Tampico Jalap.*
B' D.ANIEL HANIBLHY, ESQ., F.lt.s., F.I, s.

(TIZASEMETEED By NH: ALTHOR.

登 Two centuries amb a half have elapsed since Jalaj, the tuburcule of aconvolval.ecenus plant of Mexico, was introluced into the Miteria Medica of Europe. The botanical origin of the chug long remained unsettled, evidence of which exists in tire fact that t::o phats, neither of which gicids jalay, hare in succession received, and still retilin, the specitic mane Jotapu. The veritable sumpe of jalan, howerer, was brought to hight between the years 1527 and 15%, in which latter the plant was eleccribed by Wenderoth as Cuntulculus l'ugu. In 1833, it wis figured by Hayne under the name of I_{p} mase ${ }^{2}$ 'uryan; but in 1839, it was thansferred, on account of its tahalar corolla and easert stameas, to Choisy's gemas E.cojominm. As this senns has been recently mited to Ipromect by Dr. Mcisucr, it ippens liest to return to the name proposed by Hayne, and

The unsettled condition of Mexico, and the fluctuations of commeree, have alternately depreciated or embanced the value of jalap, and have led to the occasiomal impurtation of other roots prasessing more or less of the characters of the true drug. ()f such kinds of jalap, one of the most remarkable is a tubercule imported a fuw years ago fur the, first tme from Tanpico, and thence called Tampira Jalap. ${ }^{+}$This drig hias been cxtensively hrought intes the marrect (that $1 s$ to sny, by humdreds of bales); and though it is

It caniut, at least, trace this jalap to have by van wifered

less rich in resin and less pursativo than truo jalay, jet on account of its lower price, it has fomul a ren!y sale, chiefly in continental trude.
As the butanient origin of this so-called Tampice Jalap, and even its place of growth, were completely unknown, I addressed a letter, in November, 1stit, to my friond Hugo Finck, Esy., Prussian Vicc-Consul at Condowa (Mexico), berging that he would, if possible, procmro for me some information on the subject. Mr. Finek at first expressed strong doubts ts to Trampico Jalap being anything else thans the ront of Butafus Jalayn, Choss, linown in Mexico as Purga macho. Upon inquiry, howerer, he ascertained that such could not be the case, but that it is a production of the State of Gumajnate, where it grows alomg the Siemat Gorda, in the neishborhood of San Luis de la Paz. At thes town, and in the adjacent villages, it is purchased of the Indians and carried by the muletecrs to 'fampion, where it is known as Purga de Sicrra Giorde.
Ill atten pits to panare spumens of the Ilant ware $\hat{\text { foin }}$, stme time fruitless, chictly Fwing to the difficulty : f fualing ans wat in the district who cunld be induced to twhe the newlful trouble. The perses erance of Ma. Finch, and his friend MI. E. Deathe Comsul General for Prussia in the city of Mexicn, overame sit length this ubstacho, but only to meet with others hardly less embarrassing. The firsi lot of specimens despatched frim Gliathajuato was stulen frome the mail; the seco:ud shared the same fate; while a thind, which iacheded live tubercules, was, by successive detentions on the way, fully tive months in reaching Englani. The box, however, came to hand in June last (1869); and, amid a mass of damp earth and decaying matter, I had the satisfaction of discovering one solitary tubercule cxhiiniting signs of vitality: Tinis, placed in a greenhonse and carefully nu:sed, soon began to grow with mapidity, and, on remural to :m open border, pruduced at tall and vigorons plant, which towavds Eeptember showed signs of flowering. It was then taken up and replaced in the greenhonse, where it blossomed freely in ()ctuber last, bat dad not mature my sceds. Accompanjibes the tubercules, but of coursa in a separate boa, my correspondent sent sume piessed and dried specinens from Guanajuato, winch correspund perfectly with tie growner plant.
Having ascertained from the study of the eso materitus, that the phan belonged to the genus Ipemace, I endeavorud to identify it with some sipecies described in the "Prodromus" of Do Candolle, or in the suiseguently published "Ammahes" of Walpers, but without success. Neither was I ible to find any corresponding specimen in the herbaria of the Briish Ahuseum or of the Royal Gardens of Kew. In the parris Masemu there is :a phant, collected by Galeutti on the lofty Cordhlera, mear Casaca, which, so far as a scanty specimen cunbles me to judge, accords preciscly with that received from Mr. Finck, It buass a mumber which is not mentioned in tho caumeratoon, by Martens, of Galentti's Cimadrularen (contained in the "Mulletin de l'Acudémse Ruanlo de Bruxelles"); and, I therefore conclude that it is unnamed. Under these circumstances, I have drawn up the followms dingnosis and description of the rlant, which I propose to call fromer simelacs. The specific name is cho ens in allusion to tho re-

[^0]: From Comytes Fembus lo Cheralizal Nena

