EXPLANATION OP THE ARTICLES
 -AND-

ASTRONOMICAL NOTES FOR THE YEAR I890.

On the left hand page of each month are given all the requisite data for Solar observations of Time and Latitude -namely, the Equation of Time (Sun slow or fast of clock), being the difference between Apparent (solar) and Mean (uniform clock) Time, which is given for the instant of Apparent Noon, and the Sun's Declination of Mean Noon, both Greenwich time; also the Sun's apparent semi-diameter to the nearest tenth of a second of arc for every day throughout the year. All the other particulars are calculated to the nearest minute of Local Mean Time for Charlottetown, Longitude $63^{\circ} 7^{\prime} 23^{\prime \prime} \mathrm{W} .=4$ hours, 12 minutes, 29.4 seconds.

Note.-Half the day's length before and after 120 o'clock, noon, gives the apparent or Sun-dial time of sunrise and sunset; the mean clock time is found by adding or subtracting the equation according to whether Sun is Slow or Fast.

The Sun's Declination at Greenwich Apparent Noon, if. required, can be obtained from that at Mean Noon by multiplying the hourly variation of Declination by the equation of Time for the same day, reduced to the decimal of an hour, and applying the result according to the conditions here given.

Declination	Increasing.	Declination		Decreasing.
Sun slow of dock Add	Sun fast of clock Subtract	Sun slow of clock Subtract	Sun fast of clock Add	

Example of process.-Required the Sun's Declination at Apparent Noon, Greenwich time, November 1rth, 1890.

 Greenwich Mean Noon $17^{\circ} 30^{\prime} 5.7$ Sun's Declination, Nov. rith, Apparent Noon $17^{\circ} 29^{\prime} 54-9^{\prime \prime}$.

