INTERMEDIATE ENAMINATION, 1880.

TRIGONOMETRY-ALGEBRA.

Examino's - Alexander Johnson, LL.D., Rev. A. N. McQuarrie, B.A., George H. Chandler, M.A.

Α.

- 1. Given $tan A = \frac{4}{3}$, find sec A and versin A.
 - 2. In any triangle prove

$$\cos \frac{1}{2} A = \sqrt{-\frac{s(s-a)}{bc}}$$

- 3. Assuming the diameter of the earth to be 7.926 miles, calculate the dip of the sea horizon as seen from a mountain 4 miles high.
- 4. Prove that the expression for any angle in circular measure can be converted into seconds by multiplying it by a constant number, and calculate the number.
- 5. Define a logarithm, and prove that the logarithm of a quotient of two numbers is equal to the difference of the logarithms of the numbers.
- 6. What convention is laid down in order to affix a meaning to such expressions as $a^{-\frac{1}{2}}$ and $b^{\frac{3}{8}}$? Adopting it, find what these denote, and find other expressions for them.
 - 7. Solve the equations:--

$$\frac{x}{y} = \frac{y}{q} = \frac{a}{n}, \quad x = y = -a:$$

$$\frac{ax}{b(x-1-c)} : \frac{bx}{a(x-1-c)} = 1.$$
B.

S. Simplify the expression:--

$$\frac{(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}}{(1+x)^{\frac{1}{2}} - (1-x)^{\frac{1}{2}}},$$

first by rationalizing the numerator, and then by rationalizing the denominator; and then add together your two results. 9. Find the values of x and y from the simultaneous equations:

$$3^{y} = \frac{27}{3^{x}}, \quad 2^{y} = 2^{y} \leq 4.$$

- 10. Show that the sum of the cubes of any three consecutive numbers is divisible by three times the middle number.
 - 11. Prove that $tan (A+B) = \frac{tan A + tan B}{1-tan A tan B}$
- a. Hence deduce the value of tan 2 A and tan (A B).
- 12. A yacht is 5.8 nautical miles from the mouth of a harbor bearing S. b. W.; in order to reach the harbor she is obliged, by reason of a southerly wind, to make two courses, the first E. S. E., the other S. W b. W., calculate the distance run in each course, and the whole time, the rate of sailing being 7 knots.

C.

- 13. Find the sine of 1".
- 14. To find the distance of a column of cavalry I ascertain with a micrometer that its vertical height subtends an angle of 4'; if we assume the height of a mounted soldier to be 8 feet, what is the distance of the column?
 - 15. Solve the equations:

$$\frac{7x+1}{x-1} = \frac{35}{9} \cdot \frac{x+4}{x+2} + 3\frac{1}{9}$$

$$\frac{2}{x-\sqrt{2-x^2}} = \frac{2}{x-\sqrt{2-x^2}} = x.$$

to. The plate of a looking-glass is 18 inches by 12, and it is to be framed with a frame of uniform width, whose area is to be equal to that of the glass; find the width of the frame.